БИОХИМИЯ, 2019, том 84, вып. 11, с. 1538–1552

УДК 577.12

Роль микроРНК в регуляции редокс-зависимых процессов

Обзор

© 2019 Е.В. Калинина *, В.И. Иванова-Радкевич, Н.Н. Чернов **

Российский университет дружбы народов, 117198 Москва, Россия; электронная почта: kalinina-ev@rudn.ru

Поступила в редакцию 31.05.2019
После доработки 04.07.2019
Принята к публикации 04.07.2019

DOI: 10.1134/S0320972519110022

КЛЮЧЕВЫЕ СЛОВА: активные формы кислорода, клеточный редокс-гомеостаз, микроРНК.

Аннотация

Клеточный редокс-гомеостаз, определяемый совокупностью окислительно-восстановительных процессов и активностью систем, контролирующих их баланс, является важным фактором, обеспечивающим жизнеспособность клетки. Редокс-зависимая регуляция клеточных процессов может рассматриваться как многоуровневая система, включающая в себя не только белки и комплексы ферментов, но и некодирующие РНК, среди которых значительная роль принадлежит микроРНК. В обзоре рассматривается роль микроРНК в редокс-зависимой регуляции как ферментов генерации АФК, так и ферментов антиоксидантной защиты в клетках человека и животных. Особое внимание уделено влиянию микроРНК на редокс-зависимые процессы в опухолевой клетке. Обсуждается действие АФК на экспрессию микроРНК и роль системы с обратной связью «АФК–микроРНК» в регуляции клеточного редокс-статуса.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

** Автор является выпускником кафедры биохимии биологического факультета МГУ им. М.В. Ломоносова.

Финансирование

Публикация подготовлена при поддержке Программы РУДН «5-100».

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных авторами исследований с участием людей и использованием животных в качестве объектов.

Список литературы

1. Singh, A., Kukreti, R., Saso, L., and Kukreti, S. (2019) Oxidative stress: a key modulator in neurodegenerative diseases, Molecules, 24, 583, doi: 10.3390/molecules24081583.

2. Massaro, M., Scoditti, E., Carluccio, M.A., and De Caterina, R. (2019) Oxidative stress and vascular stiffness in hypertension: a renewed interest for antioxidant therapies? Vascul. Pharmacol., 116, 45–50, doi: 10.1016/j.vph.2019.03.004.

3. Sies, H., Berndt, C., and Jones, D.P. (2017) Oxidative stress, Annu. Rev. Biochem., 86, 715–748, doi: 10.1146/annurev-biochem-061516-045037.

4. Ursini, F., Maiorino, M., and Forman, H.J. (2016) Redox homeostasis: the golden mean of healthy living, Redox Biol., 8, 205–215, doi: 10.1016/j.redox.2016.01.010.

5. Klotz, L.O., and Steinbrenner, H. (2017) Cellular adaptation to xenobiotics: interplay between xenosensors, reactive oxygen species and FOXO transcription factors, Redox Biol., 13, 646–654, doi: 10.1016/j.redox.2017.07.015.

6. Jones, D.P. (2006) Redefining oxidative stress, Antioxid. Redox Signal., 8, 865–1879, doi: 10.1089/ars.2006.8.1865.

7. Hopkins, B.L., and Neumann, C.A. (2019) Redoxins as gatekeepers of the transcriptional oxidative stress response, Redox Biol., 21, 101104, doi: 10.1016/j.redox.2019.101104.

8. Kalinina, E.V., Chernov, N.N., and Saprin, A.N. (2008) Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes, Biochemistry (Moscow), 73, 1493–1510, doi: 10.1134/S0006297908130099.

9. Leisegang, M.S., Schroder, K., and Brandes, R.P. (2018) Redox regulation and noncoding RNAs, Antioxid. Redox Signal., 29, 793–812, doi: 10.1089/ars.2017.7276.

10. Uchida, S., and Bolli, R. (2018) Short and long noncoding RNAs regulate the epigenetic status of cells, Antioxid. Redox Signal., 29, 832–845, doi: 10.1089/ars.2017.7262.

11. Engedal, N., Zerovnik, E., Rudov, A., Galli, F., Olivieri, F., Procopio, A.D., Rippo, M.R., Monsurro, V., Betti, M., and Albertini, M.C. (2018) From oxidative stress damage to pathways, networks, and autophagy via microRNAs, Oxid. Med. Cell. Longev., 2018, 4968321, doi: 10.1155/2018/4968321.

12. Lan, J., Huang, Z., Han, J., Shao, J., and Huang, C. (2018) Redox regulation of microRNAs in cancer, Cancer Lett., 418, 250–259, doi: 10.1016/j.canlet.2018.01.010.

13. Koroleva, I.A., Nazarenko, M.S., and Kucher, A.N. (2018) Role of microRNA in development of instability of atherosclerotic plaques, Biochemistry (Moscow), 82, 1380–1390, doi: 10.1134/S0006297917110165.

14. Vishnoi, A., and Rani, S. (2017) MiRNA biogenesis and regulation of diseases: an overview, Methods Mol. Biol., 1509, 1–10, doi: 10.1007/978-1-4939-6524-3_1.

15. Drusco, A., and Croce, C.M. (2017) MicroRNAs and cancer: a long story for short RNAs, Adv. Cancer Res., 135, 1–24, doi: 10.1016/bs.acr.2017.06.005.

16. Wu, K., He, J., Pu, W., Peng, Y. (2018) The role of exportin-5 in microRNA biogenesis and cancer, Genomics Proteomics Bioinformatics, 16, 120–126, doi: 10.1016/j.gpb.2017.09.004.

17. Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing, Nature, 436, 740–744, doi: 10.1038/nature03868.

18. Bandara, V., Michael, M.Z., and Gleadle, J.M. (2014) Hypoxia represses microRNA biogenesis proteins in breast cancer cells, BMC Cancer, 14, 533, doi: 10.1186/1471-2407-14-533.

19. Suarez, Y., Fernandez-Hernando, C., Pober, J.S., and Sessa, W.C. (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells, Circ. Res., 100, 1164–1173, doi: 10.1161/01.RES.0000265065.26744.17.

20. Orom, U.A., Nielsen, F.C., and Lund, A.H. (2008) MicroRNA-10a binds the 5′-UTR of ribosomal protein mRNAs and enhances their translation, Mol. Cell, 30, 460–471, doi: 10.1016/j.molcel.2008.05.001.

21. Havens, M.A., Reich, A.A., Duelli, D.M., and Hastings, M.L. (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway, Nucleic Acids Res., 40, 4626–4640, doi: 10.1093/nar/gks026.

22. Ho, J.J., Metcalf, J.L., Yan, M.S., Turgeon, P.J., Wang, J.J., Chalsev, M., Petruzziello-Pellegrini, T.N., Tsui, A.K., He, J.Z., Dhamko, H., Man, H.S., Robb, G.B., The, B.T., Ohh, M., and Marsden, P.A. (2012) Functional importance of Dicer protein in the adaptive cellular response to hypoxia, J. Biol. Chem., 287, 29003–29020, doi: 10.1074/jbc.M112.373365.

23. Wiesen, J.L., and Tomasi, T.B. (2009) Dicer is regulated by cellular stresses and interferons, Mol. Immunol., 46, 1222–1228, doi: 10.1016/j.molimm.2008.11.012.

24. Ungvari, Z., Tucsek, Z., Sosnowska, D., Toth, P., Gautam, T., Podlutsky, A., Csiszar, A., Losonczy, G., Valcarcel-Ares, M.N., Sonntag, W.E., and Csiszar, A. (2012) Aging-induced dysregulation of Dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells, J. Gerontol. A Biol. Sci. Med. Sci., 68, 877–891, doi: 10.1093/gerona/gls242.

25. Cheng, X., Ku, C.-H., and Siow, R.C.M. (2013) Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis, Free Radic. Biol. Med., 64, 4–11, doi: 10.1016/j.freeradbiomed.2013.07.025.

26. Tang, X., Li, M., Tucker, L., and Ramratnam, B. (2011) Glycogen synthase kinase 3 beta (GSK3β) phosphorylates the RNAase III enzyme Drosha at S300 and S302, PLoS One, 6, e20391, doi: 10.1371/journal.pone.0020391.

27. Upton, J.P., Wang, L., Han, D., Wang, E.S., Huskey, N.E., Lim, L., Truitt, M., McManus, M.T., Ruggero, D., Goga, A., Papa, F.R., and Oakes, S.A. (2012) IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2, Science, 338, 818–822, doi: 10.1126/science.1226191.

28. Poulsen, H.E., Specht, E., Broedbaek, K., Henriksen, T., Ellervik, C., Mandrup-Poulsen, T., Tonnesen, M., Nielsen, P.E, Andersen, H.U., and Weimann, A. (2012) RNA modifications byoxidation: a novel disease mechanism? Free Radic. Biol. Med., 52, 1353–1361, doi: 10.1016/j.freeradbiomed.2012.01.009.

29. Karihtala, P., Porvari, K., Soini, Y., and Haapasaari, K.M. (2017) Redox regulating enzymes and connected microRNA regulators have prognostic value in classical Hodgkin lymphomas, Oxid. Med. Cell. Longev., 2017, 2696071, doi: 10.1155/2017/2696071.

30. Li, G., Luna, C., Qiu, J., Epstein, D.L., and Gonzalez, P. (2009) Alterations in microRNA expression in stress-induced cellular senescence, Mech. Ageing Dev., 130, 731–741, doi: 10.1016/j.mad.2009.09.002.

31. Ji, G., Lv, K., Chen, H., Wang, T., Wang, Y., Zhao, D., Qu, L., and Li, Y. (2013) MiR-146a regulates SOD2 expression in H2O2 stimulated PC12 cells, PLoS One, 8, e69351, doi: 10.1371/journal.pone.0069351.

32. Haque, R., Chun, E., Howell, J.C., Sengupta, T., Chen, D., and Kim, H. (2012) MicroRNA-30b-mediated regulation of catalase expression in human ARPE-19 cells, PLoS One, 7, e42542, doi: 10.1371/journal.pone.0042542.

33. Wang, L., Huang, H., Fan, Y., Kong, B., Hu, H., Hu, K., Guo, J., Mei, Y., and Liu, W.L. (2014) Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway, Oxid. Med. Cell. Longev., 2014, 960362, doi: 10.1155/2014/960362.

34. Zhang, Y., Zheng, S., Geng, Y., Xue, J., Wang, Z., Xie, X., Wang, J., Zhang, S., and Hou, Y. (2015) MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1, PLoS One, 10, e0122674, doi: 10.1371/journal.pone.0122674.

35. Dubois-Deruy, E., Cuvelliez, M., Fiedler, J., Charrier, H., Mulder, P., Hebbar, E., Pfanne, A., Beseme, O., Chwastyniak, M., Amouyel, P., Richard, V., Bauters, C., Thum, T., and Pinet, F. (2017) MicroRNAs regulating superoxide dismutase 2 are new circulating biomarkers of heart failure, Sci. Rep., 7, 14747, doi: 10.1038/s41598-017-15011-6.

36. Matouskova, P., Hanouskova, B., and Skalova, L. (2018) MicroRNAs as potential regulators of glutathione peroxidases expression and their role in obesity and related pathologies, Int. J. Mol. Sci., 19, 1199, doi: 10.3390/ijms19041199.

37. Cortez, M.A., Valdecanas, D., Zhang, X., Zhan, Y, Bhardwaj, V., Calin, G.A., Komaki, R., Giri, D.K., Quini, C.C., Wolfe, T., Peltier, H.J., Bader, A.G., Heymach, J.V., Meyn, R.E., and Welsh, J.W. (2014) Therapeutic delivery of miR-200c enhances radiosensitivity in lung cancer, Mol. Ther., 22, 1494–1503, doi: 10.1038/mt.2014.79.

38. Jiang, W., Min, J., Sui, X., Qian, Y., Liu, Y., Liu, Z., Zhou, H., Li, X., and Gong, Y. (2015) MicroRNA-26a-5p and microRNA-23b-3p up-regulate peroxiredoxin III in acute myeloid leukemia, Leuk. Lymphoma, 56, 460–471, doi: 10.3109/10428194.2014.924115.

39. Bai, X.Y., Ma, Y., Ding, R., Fu, B., Shi, S., and Chen, X.M. (2011) MiR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes, J. Am. Soc. Nephrol., 22, 1252–1261, doi: 10.1681/ASN.2010040367.

40. Kyrychenko, S., Kyrychenko, V., Badr, M.A., Ikeda, Y., Sadoshima, J., and Shirokova, N. (2015) Pivotal role of miR-448 in the development of ROS-induced cardiomyopathy, Cardiovasc. Res., 108, 324–334, doi: 10.1093/cvr/cvv238.

41. Li, S.Z., Hu, Y.Y., Zhao, J., Zhao, Y.B., Sun, J.D., Yang, Y.F., Ji, C.C., Liu, Z.B., Cao, W.D., Qu, Y., Liu, W.P., Cheng, G., and Fei, Z. (2014) MicroRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression, Biochem. Biophys. Res. Commun., 444, 6–12, doi: 10.1016/j.bbrc.2013.12.136.

42. Fu, Y., Zhang, Y., Wang, Z., Wang, L., Wei, X., Zhang, B., Wen, Z., Fang, H., Pang, Q., and Yi, F. (2010) Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy, Am. J. Nephrol., 32, 581–589, doi: 10.1159/000322105.

43. Chen, F., Yin, C., Dimitropoulou, C., and Fulton, D.J. (2016) Cloning, characteristics, and functional analysis of rabbit NADPH oxidase 5, Front. Physiol., 7, 284, doi: 10.3389/fphys.2016.00284.

44. Yang, S., Gao, Y., Liu, G., Li, J., Shi, K., Du, B., Si, D., and Yang, P. (2015) The human ATF1 rs11169571 polymorphism increases essential hypertension risk through modifying miRNA binding, FEBS Lett., 589, 2087–2093, doi: 10.1016/j.febslet.2015.06.029.

45. Varga, Z.V., Kupai, K., Szucs, G., Gaspar, R., Paloczi, J., Farago, N., Zvara, A., Puskas, L.G., Razga, Z., Tiszlavicz, L., Bencsik, P., Gorbe, A., Csonka, C., Ferdinandy, P., and Csont, T. (2013) MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart, J. Mol. Cell. Cardiol., 62, 111–121, doi: 10.1016/j.yjmcc.2013.05.009.

46. Wang, Y., Zhao, X., Wu, X., Dai, Y., Chen, P., and Xie, L. (2016) MicroRNA-182 mediates Sirt1-induced diabetic corneal nerve regeneration, Diabetes, 65, 2020–2031, doi: 10.2337/db15-1283.

47. Fierro-Fernandez, M., Busnadiego, O., Sandoval, P., Espinosa-Diez, C., Blanco-Ruiz, E., Rodriguez, M., Pian, H., Ramos, R., Lopez-Cabrera, M., Garcia-Bermejo, M.L., and Lamas, S. (2015) MiR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2, EMBO Rep., 16, 1358–1377, doi: 10.15252/embr.201540750.

48. Carlomosti, F., D’Agostino, M., Beji, S., Torcinaro, A., Rizzi, R., Zaccagnini, G., Maimone, B., Di Stefano, V., De Santa, F., Cordisco, S., Antonini, A., Ciarapica, R., Dellambra, E., Martelli, F., Avitabile, D., Capogrossi, M.C., and Magenta, A. (2017) Oxidative stressinduced miR-200c disrupts the regulatory loop among SIRT1, FOXO1, and eNOS, Antioxid. Redox Signal., 27, 328–344, doi: 10.1089/ars.2016.6643.

49. Kim, J., Lee, K.S., Kim, J.H., Lee, D.K., Park, M., Choi, S., Park, W., Kim, S., Choi, Y.K., Hwang, J.Y., Choe, J., Won, M.H., Jeoung, D., Lee, H., Ryoo, S., Ha, K.S., Kwon, Y.G., and Kim, Y.M. (2017) Aspirin prevents TNF-α-induced endothelial cell dysfunction by regulating the NF-κB-dependent miR-155/eNOS pathway: role of a miR-155/eNOS axis in preeclampsia, Free Radic. Biol. Med., 104, 185–198, doi: 10.1016/j.freeradbiomed.2017.01.010.

50. Cho, K.J., Song, J., Oh, Y., and Lee, J.E. (2015) MicroRNA-Let-7a regulates the function of microglia in inflammation, Mol. Cell. Neurosci., 68, 167–176, doi: 10.1016/j.mcn.2015.07.004.

51. Muxel, S.M., Laranjeira-Silva, M.F., Zampieri, R.A., and Floeter-Winter, L.M. (2017) Leishmania (Leishmania) amazonensis induces macrophage miR-294 and miR-721 expression and modulates infection by targeting NOS2 and L-arginine metabolism, Sci. Rep., 7, 44141, doi: 10.1038/srep44141.

52. Singh, A., Happel, C., Manna, S.K., Acquaah-Mensah, G., Carrerero, J., Kumar, S., Nasipuri, P., Krausz, K.W., Wakabayashi, N., Dewi, R., Boros, L.G., Gonzalez, F.J., Gabrielson, E., Wong, K.K., Girnun, G., and Biswal, S. (2013) Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis, J. Clin. Invest., 123, 2921–2934, doi: 10.1172/JCI66353.

53. Sripada, L., Tomar, D., and Singh, R. (2012) Mitochondria: one of the destinations of miRNAs, Mitochondrion, 12, 593–599, doi: 10.1016/j.mito.2012.10.009.

54. Muratsu-Ikeda, S., Nangaku, M., Ikeda, Y., Tanaka, T., Wada, T., and Inagi, R. (2012) Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells, PLoS One, 7, e41462, doi: 10.1371/journal.pone.0041462.

55. Wu, S., Lu, H., and Bai, Y. (2019) Nrf2 in cancers: a double-edged sword, Cancer Med., 8, 2252–2267, doi: 10.1002/cam4.2101.

56. Singh, B., Ronghe, A.M., Chatterjee, A., Bhat, N.K., and Bhat, H.K. (2013) MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis, Carcinogenesis, 34, 1165–1172, doi: 10.1093/carcin/bgt026.

57. Narasimhan, M., Patel, D., Vedpathak, D., Rathinam, M., Henderson, G., and Mahimainathan, L. (2012) Identification of novel microRNAs in posttranscriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells, PLoS One, 7, e51111, doi: 10.1371/journal.pone.0051111.

58. Do, M.T., Kim, H.G., Choi, J.H., and Jeong, H.G. (2014) Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents, Free Radic. Biol. Med., 74, 21–34, doi: 10.1016/j.freeradbiomed.2014.06.010.

59. Yaribeygi, H., Atkin, S.L., and Sahebkar, A. (2018) Potential roles of microRNAs in redox state: an update, J. Cell. Biochem., 1–6, doi: 10.1002/jcb.27475.

60. Papp, D., Lenti, K., Modos, D., Fazekas, D., Dul, Z., Turei, D., Foldvari-Nagy, L., Nussinov, R., Csermely, P., and Korcsmaros, T. (2012) The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops, FEBS Lett., 586, 1795–1802, doi: 10.1016/j.febslet.2012.05.016.

61. Sangokoya, C., Telen, M.J., and Chi, J.T. (2010) MicroRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease, Blood, 116, 4338–4348, doi: 10.1182/blood-2009-04-214817.

62. Franklin, C.C., Backos, D.S., Mohar, I., White, C.C., Forman, H.J., and Kavanagh, T.J. (2009) Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase, Mol. Aspects Med., 30, 86–98, doi: 10.1016/j.mam.2008.08.009.

63. Zhou, C., Zhao, L., Zheng, J., Wang, K., Deng, H., Liu, P., Chen, L., and Mu, H. (2017) MicroRNA-144 modulates oxidative stress tolerance in SH-SY5Y cells by regulating nuclear factor erythroid 2-related factor 2-glutathione axis, Neurosci. Lett., 655, 21–27, doi: 10.1016/j.neulet.2017.06.045.

64. Stachurska, A., Ciesla, M., Kozakowska, M., Wolffram, S., Boesch-Saadatmandi, C., Rimbach, G., Jozkowicz, A., Dulak, J., and Loboda, A. (2013) Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells, Mol. Nutr. Food Res., 57, 504–515, doi: 10.1002/mnfr.201200456.

65. Kabaria, S., Choi, D.C., Chaudhuri, A.D., Jain, M.R., Li, H., and Junn, E. (2015) MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression, Free Radic. Biol. Med., 89, 548–556, doi: 10.1016/j.freeradbiomed.2015.09.010.

66. Eades, G., Yang, M., Yao, Y., Zhang, Y., and Zhou, Q. (2011) MiR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells, J. Biol. Chem., 286, 40725–40733, doi: 10.1074/jbc.M111.275495.

67. Urbanek, P., and Klotz, L.O. (2017) Posttranscriptional regulation of FOXO expression: microRNAs and beyond, Br. J. Pharmacol., 174, 1514–1532, doi: 10.1111/bph.13471.

68. Gheysarzadeh, A., and Yazdanparast, R. (2015) STAT5 reactivation by catechin modulates H2O2-induced apoptosis through miR-182/FOXO1 pathway in SK-N-MC cells, Cell Biochem. Biophys., 71, 649–656, doi: 10.1007/s12013-014-0244-6.

69. Liu, Y., Pan, Q., Zhao, Y., He, C., Bi, K., Chen, Y., Zhao, B., Chen, Y., and Ma, X. (2015) MicroRNA-155 regulates ROS production, NO generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions, J. Cell. Biochem., 116, 2870–2881, doi: 10.1002/jcb.25234.

70. Kinoshita, C., Aoyama, K., and Nakaki, T. (2018) Neuroprotection afforded by circadian regulation of intracellular glutathione levels: a key role for miRNAs, Free Radic. Biol. Med., 119, 17–33, doi: 10.1016/j.freeradbiomed.2017.11.023.

71. Helfinger, V., and Schroder, K. (2018) Redox control in cancer development and progression, Mol. Aspects Med., 63, 88–98, doi: 10.1016/j.mam.2018.02.003.

72. Jeong, D., Kim, J., Nam, J., Sun, H., Lee, Y.H., Lee, T.J., Aguiar, R.C., and Kim, S.W. (2015) MicroRNA-124 links p53 to the NF-κB pathway in B-cell lymphomas, Leukemia, 29, 1868–1874, doi: 10.1038/leu.2015.101.

73. Sachdeva, M., Zhu, S., Wu, F., Wu, H., Walia, V., Kumar, S., Elble, R., Watabe, K., and Mo, Y.Y. (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145, Proc. Natl. Acad. Sci. USA, 106, 3207–3212, doi: 10.1073/pnas.0808042106.

74. Pichiorri, F., Suh, S.S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., Zhou, W., Benson, D.M. Jr., Hofmainster, C., Alder, H., Garofalo, M., Di Leva, G., Volinia, S., Lin, H.J., Perrotti, D., Kuehl, M., Aqeilan, R.I., Palumbo, A., and Croce, C.M. (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development, Cancer Cell, 18, 367–381, doi: 10.1016/j.ccr.2010.09.005.

75. Xiao, Y., Yan, W., Lu, L., Wang, Y., Lu, W., Cao, Y., and Cai, W. (2015) p38/p53/miR-200a-3p feedback loop promotes oxidative stress-mediated liver cell death, Cell Cycle, 14, 1548–1558, doi: 10.1080/15384101.2015.1026491.

76. Yin, M., Ren, X., Zhang, X., Luo, Y., Wang, G., Huang, K., Feng, S., Bao, X., Huang, K., He, X., Liang, P., Wang, Z., Tang, H., He, J., and Zhang, B. (2015) Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation, Oncogene, 34, 691–703, doi: 10.1038/onc.2013.597.

77. Chang, T.C., Yu, D., Lee, Y.S., Wentzel, E.A., Arking, D.E., West, K.M., Dang, C.V., Thomas-Tikhonenko, A., and Mendell, J.T. (2008) Widespread microRNA repression by Myc contributes to tumorigenesis, Nat. Genet., 40, 43–50, doi: 10.1038/ng.2007.30.

78. Yang, H., Li, T.W., Zhou, Y., Peng, H., Liu, T., Zandi, E., Martinez-Chantar, M.L., Mato, J.M., and Lu, S.C. (2015) Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice, Antioxid. Redox Signal., 22, 259–274, doi: 10.1089/ars.2014.6027.

79. Lingappan, K. (2018) NF-κB in oxidative stress, Curr. Opin. Toxicol., 7, 81–86, doi: 10.1016/j.cotox.2017.11.002.

80. Toiyama, Y., Takahashi, M., Hur, K., Nagasaka, T., Tanaka, K., Inoue, Y., Kusunoki, M., Boland, C.R., and Goel, A. (2013) Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer, J. Natl. Cancer Inst., 105, 849–859, doi: 10.1093/jnci/djt101.

81. Hong, J., Wang, Y., Hu, B.C., Xu, L., Liu, J.Q., Chen, M.H., Wang, J.Z., Han, F., Zheng, Y., Chen, X., Li, Q., Yang, X.H., Sun, R.H., and Mo, S.J. (2017) Transcriptional downregulation of microRNA-19a by ROS production and NF-κB deactivation governs resistance to oxidative stress-initiated apoptosis, Oncotarget, 8, 70967–70981, doi: 10.18632/oncotarget.20235.

82. Jiang, S., Zhang, H.W., Lu, M.H., He, X.H., Li, Y., Gu, H., Liu, M.F., and Wang, E.D. (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene, Cancer Res., 70, 3119–3127, doi: 10.1158/0008-5472.CAN-09-4250.

83. Nusse, R., and Clevers, H. (2017) Wnt/β-catenin signaling, disease, and emerging therapeutic modalities, Cell, 169, 985–999, doi: 10.1016/j.cell.2017.05.016.

84. Wang, P., Zhu, C.F., Ma, M.Z., Chen, G., Song, M., Zeng, Z.L., Lu, W.H., Yang, J., Wen, S., Chiao, P.J., Hu, Y., and Huang, P. (2015) Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer, Oncotarget, 6, 21148–21158, doi: 10.18632/oncotarget.4125.

85. Beccafico, S., Morozzi, G., Marchetti, M.C., Riccardi, C., Sidoni, A., Donato, R., and Sorci, G. (2015) Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth in vivo in embryonal rhabdomyosarcoma cells, Carcinogenesis, 36, 1071–1083, doi: 10.1093/carcin/bgv098.

86. Liu, W., Zabirnyk, O., Wang, H., Shiao, Y.H., Nickerson, M.L., Khalil, S., Anderson, L.M., Perantoni, A.O., and Phang, J.M. (2010) MicroRNA-23b targets proline oxidase, a novel tumor suppressor protein in renal cancer, Oncogene, 29, 4914–4924, doi: 10.1038/onc.2010.237.

87. Saxena, A., Shoeb, M., Ramana, K.V., and Srivastava, S.K. (2013) Aldose reductase inhibition suppresses colon cancer cell viability by modulating microRNA-21 mediated programmed cell death 4 (PDCD4) expression, Eur. J. Cancer, 49, 3311–3319, doi: 10.1016/j.ejca.2013.05.031.

88. Mateescu, B., Batista, L., Cardon, M., Gruosso, T., de Feraudy, Y., Mariani, O., Nicolas, A., Meyniel, J.P., Cottu, P., Sastre-Garau, X., and Mechta-Grigoriou, F. (2011) MiR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response, Nat. Med., 17, 1627–1635, doi: 10.1038/nm.2512.

89. Sheth, S., Jajoo, S., Kaur, T., Mukherjea, D., Sheehan, K., Rybak, L.P., and Ramkumar, V. (2012) Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/microRNA-21 pathway, PLoS One, 7, e51655, doi: 10.1371/journal.pone.0051655.

90. Meng, X., Wu, J., Pan, C., Wang, H., Ying, X., Zhou, Y., Yu, H., Zuo, Y., Pan, Z., Liu, R.Y., and Huang, W. (2013) Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD, Gastroenterology, 145, 426–436, doi: 10.1053/j.gastro.2013.04.004.

91. Das, S., Ferlito, M., Kent, O.A., Fox-Talbot, K., Wang, R., Liu, D., Raghavachari, N., Yang, Y., Wheelan, S.J., Murphy, E., and Steenbergen, C. (2012) Nuclear miRNA regulates the mitochondrial genome in the heart, Circ. Res., 110, 1596–1603, doi: 10.1161/CIRCRESAHA.112.267732.

92. Faraonio, R., Salerno, P., Passaro, F., Sedia, C., Iaccio, A., Bellelli, R., Nappi, T.C., Comegna, M., Romano, S., Salvatore, G., Santoro, M., and Cimino, F. (2012) A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts, Cell Death Differ., 19, 713–721, doi: 10.1038/cdd.2011.143.

93. Liao, L., Su, X., Yang, X., Hu, C., Li, B., Lv, Y., Shuai, Y., Jing, H., Deng, Z., and Jin, Y. (2016) TNF-α inhibits FoxO1 by upregulating miR-705 to aggravate oxidative damage in bone marrow-derived mesenchymal stem cells during osteoporosis, Stem Cells, 34, 1054–1067, doi: 10.1002/stem.2274.

94. Cheng, L.B., Li, K.R., Yi, N., Li, X.M., Wang, F., Xue, B., Pan, Y.S., Yao, J., Jiang, Q., and Wu, Z.F. (2017) miRNA-141 attenuates UV-induced oxidative stress via activating Keap1–Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells, Oncotarget, 8, 13186–13194, doi: 10.18632/oncotarget.14489.

95. Zhang, L., Zhou, M., Wang, Y., Huang, W., Qin, G., Weintraub, N.L., and Tang, Y. (2014) MiR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4-JNK pathway, Apoptosis, 19, 975–983, doi: 10.1007/s10495-014-0987-y.

96. Li, J., Donath, S., Li, Y., Qin, D., Prabhakar, B.S., and Li, P. (2010) MiR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway, PLoS Genet., 6, e1000795, doi: 10.1371/journal.pgen.1000795.