БИОХИМИЯ, 2019, том 84, вып. 10, с. 1481–1499

УДК 577.29

Анализ регуляции белка в огуречных листьях после инокуляции растений Corynespora cassiicola: протеомный подход *

© 2019 G. Yu 1#, Y. Yu 2#, H. Fan 2,3**, D. Zhang 2, N. Cui 2, X. Wang 1, S. Jia 2, Y. Yang 2, J. Zhao 2

College of Horticulture, Shenyang Agricultural University, 110866 Shenyang, PR China

College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, PR China; E-mail: 1997500018@syau.edu.cn

Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, 110866 Shenyang, PR China

Поступила в редакцию 18.12.2018
После доработки 01.05.2019
Принята к публикации 10.06.2019

DOI: 10.1134/S0320972519100105

КЛЮЧЕВЫЕ СЛОВА: огурец, Corynespora cassiicola, iTRAQ, защитные белки, ОТ-ПЦР, гистохимическое окрашивание.

Аннотация

Мишеневидная пятнистость листьев огурца (CLS), вызываемая патогенным грибком Corynespora cassiicola, является одним из наиболее широко распространенных болезней, поражающих листья культивируемых сортов огурцов. Однако до сих пор не выяснены механизмы защиты огуречных растений в ответ на инфицирование патогеном C. cassiicola. В данной работе с помощью протеомной техники iTRAQ (isobaric tags for relative and absolute quantification) были проанализированы белки из устойчивых к возбудителю растений. Было идентифицировано 286 дифференцированно экспрессируемых белков (p < 0,05, соотношение >1,2 или <0,83) через 6 и 24 ч после инокуляции патогена в устойчивого сорта огурцов Jinyou 38. Полученные данные доступны на сайте ProteomeXchange (идентификационный номер PXD012903). Выявлены некоторые ранние реакции растений на инфицирование патогеном C. cassiicola и определены четыре значимых положения, которые могут привести к разгадке механизма возникновения устойчивости Cucumis sativus к CLS. Протеомный анализ позволил выявить модуляцию сигнальных путей в клетках устойчивых растений в ответ на инфицирование C. cassiicola. Установлено, что иммунная система растений распознает патоген и инициирует экспрессию белков основного иммунного ответа, и в том числе белков, которые входят в системы защиты и ответа на стресс, передачи сигнала, метаболизма клеток и регуляции редокс-состояния клеток. Вторжение патогена C. cassiicola вызывает активацию общих путей противодействия этому стрессу. В частности, происходит активация белков локуса О устойчивости к действию плесени (MLO), играющих ключевую роль в предотвращении развития CLS. Быстрая активация путей метаболизма углеводов и вторичного метаболизма, модификация и укрепление клеточных стенок и приспособление апоплексической окружающей среды к условиям высокого стресса крайне необходимы для возникновения устойчивости огурцов к болезни CLS. Полученные результаты способствуют большему пониманию проблемы о несовместимых взаимодействиях между растениями и патогенами и позволяют взглянуть по-новому на роль молекулярных процессов в возникновении устойчивости огурцов к болезням.

Сноски

* Приложение к статье на английском языке опубликовано на сайте журнала «Biochemistry» (Moscow) и на сайте издательства Springer (https://link.springer.com/journal/10541), том 84, вып. 8, 2019. Статья на английском языке опубликована в вып. 8, 2019 г. журнала «Biochemistry» (Moscow).

** Адресат для корреспонденции.

# Авторы внесли равный вклад в работу.

Финансирование

Исследование было выполнено при финансовой поддержке грантами Национальной ключевой R&D программы Китая (2016YFD0201004).

Вклад авторов

H. Fan задумал и спланировал исследование, G. Yu, Y. Yu, H. Fan, D. Zhang, N. Cui, X. Wang, S. Jia, Y. Yang и J. Zhao провели эксперименты, G. Yu обработал результаты и подготовил статью. Все авторы прочли и одобрили статью.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с использованием людей или животных в качестве объектов.

Список литературы

1. Gao, W., Wang, Y., and Zhang, C. (2016) Resistance identification of different cucumber varieties to Corynespora leaf spot, North. Horticult., 11, 110112.

2. Zhang, M., Jin, K., Liu, L., Shao, Z., Liu, H., Hu, S., Zhu, N., Dufresne, C.P., Chen, S., and Wang, Q. (2016) Critical role of COI1-dependent jasmonate pathway in AAL toxin induced PCD in tomato revealed by comparative proteomics, Sci. Rep., 6, 28451.

3. Abul-Hayja, Z., Williams, P.H., and Peterson, C.E. (1978) Inheritance of resistance to anthracnose and target leaf spot in cucumbers, Plant Dis. Rep., 62, 43–45.

4. Yang, L., Koo, D.H., Li, Y., Zhang, X., Luan, F., Havey, M.J., Jiang, J., and Weng, Y. (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly, Plant J., 71, 895–906.

5. Wen, C., Mao, A., Dong, C., Liu, H., Yu, S., Guo, Y.D., Weng, Y., and Xu, Y. (2015) Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L., Theor. Appl. Genetics, 128, 2495–2506.

6. Liu, H.W., Liang, C.Q., Liu, P.F., Luo, L.X., and Li, J.Q. (2015) Quantitative proteomics identifies 38 proteins that are differentially expressed in cucumber in response to cucumber green mottle mosaic virus infection, Virology J., 12, 216.

7. Meng, X., Song, T., Fan, H., Yu, Y., Cui, N., Zhao, J., and Meng, K. (2016) A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress, Acta Physiol. Plant., 38, 260.

8. Wang, Y., Liu, Y., He, P., Lamikanra, O., and Lu, J. (1998) Resistance of Chinese vitis species to Elsinoe ampelina (de Bary) shear, Hortsci. Publ. Am. Soc. Horticult. Sci., 33, 123–126.

9. Fan, H.Y., Chen, J., Zhang, C.Y., Guo, H., and Lin, Y. (2008) A two-dimensional electrophoresis protocol suitable for proteomic analysis of cucumber leaves, J. Shen. Agricult. Uni., 39, 365–367.

10. Castillejo, M.A., Fernandezaparicio, M., and Rubiales, D. (2011) Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata, J. Exper. Botany, 63, 107–109.

11. Sacute, W., Niewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis, Nature Methods, 6, 359–362.

12. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., and Eppig, J.T. (2000) Gene ontology: tool for the unification of biology, Nature Genetics, 25, 25–29.

13. Gotz, S., Garciagomez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talon, M., Dopazo, J., and Conesa, A. (2008) High-throughput functional annotation and data mining with the Blast2GO suite, Nucleic Acids Res., 36, 3420–3435.

14. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res., 40, 109–114.

15. Qi, X.H., Xu, X.W., Lin, X.J., Zhang, W.J., and Chen, X.H. (2010) Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile, Genomics, 95, 160–168.

16. Wang, X., Zhang, D., Cui, N., Yang, Y., Yu, G., and Fan, H. (2018) Transcriptome and miRNA analyses of the response to Corynespora cassiicola in cucumber, Sci. Reports, 8, 7798.

17. Xue, M., and Yi, H. (2017) Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide, Ecotoxicol. Environ. Saf., 147, 523–529.

18. Osmark, P., Boyle, B., and Brisson, N. (1998) Sequential and structural homology between intracellular pathogenesis-related proteins and a group of latex proteins, Plant Mol. Biol., 38, 1243–1246.

19. Spagnolo, A., Magninrobert, M., Alayi, T.D., Cilindre, C., Schaefferreiss, C., Van, D.A., Clement, C., Larignon, P., Ramirezsuero, M., and Chong, J. (2014) Differential responses of three grapevine cultivars to botryosphaeria dieback, Phytopathology, 104, 1021–1035.

20. Pearce, G., Yamaguchi, Y., Barona, G., and Ryan, C.A. (2010) A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes, Proc. Nat. Acad. Sci. USA, 107, 14921–14925.

21. Monteiro, F., Sebastiana, M., Pais, M.S., and Figueiredo, A. (2012) Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars, PLoS One, 8, 611–620.

22. Gregory, P., Yube, Y., Guido, B., and Ryan, C.A. (2010) A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes, Proc. Nat. Acad. Sci. USA, 107, 14921–14925.

23. Fang, L., Zhang, X., Lu, C., Zeng, X., Li, Y., Fu, D., and Gang, W. (2015) Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis, J. Exper. Botany, 66, 5663–5681.

24. Buhot, N., Douliez, J.P., Jacquemard, A., and Marion, D. (2001) A lipid transfer protein binds to a receptor involved in the control of plant defense responses, FEBS Lett., 509, 27–30.

25. Suzuki, H., Xia, Y., Cameron, R., Shadle, G., Blount, J., Lamb, C., and Dixon, R.A. (2004) Signals for local and systemic responses of plants to pathogen attack, J. Exper. Botany, 55, 169–179.

26. Sarowar, S., Kim, Y.J., Kim, K.D., Hwang, B.K., Ok, S.H., and Shin, J.S. (2009) Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco, Plant Cell Rep., 28, 419–427.

27. Kim, M.C., Lee, S.H., Kim, J.K., Chun, H.J., Choi, M.S., Chung, W.S., Moon, B.C., Kang, C.H., Park, C.Y., and Yoo, J.H. (2002) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue, J. Biol. Chem., 277, 19304–19314.

28. Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., Von, H.G., and Schulzelefert, P. (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants, J. Biol. Chem., 274, 34993–35004.

29. Devoto, A., and Turner, J.G. (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis, Ann. Botany, 92, 329–337.

30. Consonni, C., Humphry, M.E., Hartmann, H.A., Livaja, M., Durner, J., Westphal, L., Vogel, J., Lipka V., Kemmerling, B., and Schulzelefert, P. (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis, Nature Genetics, 38, 716–720.

31. Lorek, J., Griebel, T., Jones, A.M., Kuhn, H., and Panstruga, R. (2013) The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity, Mol. Plant Microbe Inter., 26, 991–1003.

32. Berken, A. (2006) ROPs in the spotlight of plant signal transduction, Cell. Mol. Life Sci., 63, 2446–2459.

33. Assmann, S.M. (2004) Plant G proteins, phytohormones, and plasticity: three questions and a speculation, Sci. Sign., 206, 20.

34. Lalonde, S., Sero, A., Pratelli, R., Pilot, G., Chen, J., Sardi, M.I., Parsa, S.A., Kim, D.Y., Acharya, B.R., and Stein E.V. (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2, Front. Physiol., 1, 24.

35. Burkart, G.M., Baskin, T.I., and Bezanilla, M. (2015) A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion, J. Cell Sci., 128, 2553–2564.

36. Thomas, C., and Berken, A. (2010) Structure and function of ROPs and their GEFs, Inegr. G Prot. Signal. Plants, 49–69.

37. Suharsono, U., Fujisawa, Y., Kawasaki, T., Iwasaki, Y., Satoh, H., and Shimamoto, K. (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice, Proc. Natl. Acad. Sci. USA, 99, 13307–13312.

38. Verma, V., Ravindran, P., and Kumar, P.P. (2016) Plant hormone-mediated regulation of stress responses, BMC Plant Biol., 16, 86.

39. Lorenzo, O., Piqueras, R., Sanchezserrano, J.J., and Solano, R. (2003) Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense, Plant Cell, 15, 165–178.

40. Chivasa, S., Hamilton, J.M., Pringle, R.S., Ndimba, B.K., Simon, W.J., Lindsey, K., and Slabas, A.R. (2006) Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures, J. Exper. Botany, 57, 1553–1562.

41. Dave, A., and Graham, I.A. (2012) Oxylipin signaling: a distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), Fron. Plant Sci., 3, 42.

42. Foyer, C.H., and Noctor, G. (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses, Plant Cell, 17, 1866–1875.

43. Orozco-Cardenas, M.L., and Ryan, C.A. (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate, Plant Cell, 13, 179–191.

44. Mike, P., Nighat, S., Paszkiewicz, K., Florance, H., and Smirnoff, N. (2011) The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis, Plant Cell Environ., 35, 388–404.

45. Kawasaki, T., Koita, H., Nakatsubo, T., Hasegawa, K., Wakabayashi, K., Takahashi, H., Umemura, K., Umezawa, T., and Shimamoto, K. (2006) Cinnamoyl-CoA reductase, a key enzyme in Lignin Biosynthesis, is an effector of small GTPase rac in defense signaling in rice, Proc. Natl. Acad. Sci. USA, 103, 230–235.

46. Pei, Z., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., and Schroeder, J.I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells, Nature, 406, 731–734.

47. Torres, M.A., Jones, J.D., and Dangl, J.L. (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana, Nat. Genet., 37, 1130–1134.

48. Hardie, D.G. (1999) Plant protein serine/threonine kinases: classification and functions, Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 97–131.

49. Lee, K.J., and Kim, K. (2015) The rice serine/threonine protein kinase OsPBL1 (Oryza Sativa Arabidopsis PBS1-LIKE 1) is potentially involved in resistance to rice stripe disease, Plant Growth Regul., 77, 1–9.

50. Mayer, M.P., and Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism, Cell. Mol. Life Sci., 62, 670–684.

51. Roelofs, J., Park, S., Haas, W., Tian, G., Mcallister, F.E., Huo, Y., Lee, B.H., Zhang, F., Shi, Y., and Gygi, S.P. (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly, Nature, 459, 861–865.

52. Cartea, M.E., Francisco, M., Soengas, P., and Velasco, P. (2011) Phenolic compounds in Brassica vegetables, Molecules,16, 251–280.

53. Lauvergeat, V., Lacomme, C., Lacombe, E., Lasserre, E., Roby, D., and Grima-Pettenati, J. (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria, Phytochemistry, 57, 1187–1195.

54. Boubakri, H., Wahab, M.A., Chong, J., Gertz, C., Gandoura, S., Mliki, A., Bertsch, C., and Soustre-Gacougnolle, I. (2013) Methionine elicits H2O2 generation and defense gene expression in grapevine and reduces plasmopara viticola infection, J. Plant Phys., 170, 1561–1568.

55. Xu, L., Zhu, L., Tu, L., Liu, L.L., Yuan, D.J., Jin, L., Long, L., and Zhang, X.L. (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry, J. Exper. Botany, 62, 5607–5621.

56. Umezawa, T., Davin, L.B., and Lewis, N.G. (1991) Formation of lignans, (–)-secoisolariciresinol and (–)-matairesinol with Forsythia intermedia cell-free extracts, J. Biol. Chem., 266, 10210–10217.

57. Katayama, T., Davin, L.B., and Lewis, N.G. (1992) An extraordinary accumulation of (–)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol, Phytochemistry, 31, 3875–3881.

58. Chu, A., Dinkova, A., Davin, L.B., Bedgar, D.L., and Lewis, N.G. (1993) Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia, J. Biol. Chem., 268, 27026–27033.

59. Tholl, D. (2015) Biosynthesis and biological functions of terpenoids in plants, Adv. Biochem. Engineer. Biotechn., 148, 63–106.

60. Irmler, S., Schroder, G., St-Pierre, B., Crouch, N.P., Hotze, M., Schmidt, J., Strack, D., Matern, U., and Schroder, J. (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase, Plant J., 24, 797–804.

61. Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G.J., Koncz, C., Yokota, T., Nagy, F., and Szekeres, M. (2002) Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis, Plant Physiol., 130, 504–513.

62. Fukushima, E.O., Seki, H., and Muranaka, T. (2014) Plant cytochrome P450s in triterpenoid biosynthesis: diversity and application to combinatorial biosynthesis, in Fifty Years of Cytochrome P450 Research (Yamazaki, H., ed.) Springer, Tokyo, pp. 125–133.

63. Mousavi, A., and Hotta, Y. (2005) Glycine-rich proteins: a class of novel proteins, Appl. Biochem. Biotechnol., 120, 169–174.