БИОХИМИЯ, 2019, том 84, вып. 10, с. 1460–1472
УДК 612.01.8;612.017.1;611.018.53
Роль каспаз в проявлении цитотоксичности клеток NK-92 в различных моделях их сокультивирования с клетками трофобласта*
Федеральное государственное бюджетное учреждение «НИИ акушерства и гинекологии им. Д.О. Отта» Северо-Западного отделения РАМН, 199034 Санкт-Петербург, Россия; электронная почта: milyutina1010@mail.ru
Поступила в редакцию 17.04.2019
После доработки 18.06.2019
Принята к публикации 22.06.2019
DOI: 10.1134/S0320972519100087
КЛЮЧЕВЫЕ СЛОВА: каспазы, гранзим B, трофобласт, естественные киллеры, апоптоз.
Аннотация
Изучение особенностей взаимодействия естественных киллеров с клетками трофобласта и выявление условий, при которых NK-клетки способны реализовывать свою цитотоксическую функцию, имеет важное фундаментальное и прикладное значение для понимания их роли в развитии патологических процессов и осложнений в период беременности. В данной работе продемонстрированы особенности изменения содержания и активации каспаз в клетках трофобласта линии Jeg-3 в различных моделях их сокультивирования с клетками линии NK-92 и показана необходимость непосредственного контакта между клетками данных популяций для активации каспазы-8 и каспазы-3 в клетках трофобласта. В результате взаимодействия в клетках линии Jeg-3 обнаруживается цитотоксический белок гранзим B, что сопровождается снижением его количества в клетках линии NK-92. Дистантное сокультивирование клеток линий NK-92 и Jeg-3 не приводит к активации инициаторной и эффекторной каспаз в клетках линии Jeg-3, характерной для картины развития апоптоза. При этом снижение исследуемых прокаспаз в клетках трофобласта может быть обусловлено реализацией их альтернативных неапоптических функций.
Текст статьи
Сноски
* Первоначально английский вариант рукописи опубликован на сайте «Biochemistry» (Moscow) http://protein.bio.msu.ru/biokhimiya, в рубрике «Papers in Press», BM19-121, 16.09.2019.
** Адресат для корреспонденции.
Финансирование
Выполнено при финансовой поддержке НШ-2873.2018.7 и Госзадания АААА-А19-119021290116-1.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с использованием людей или животных в качестве объектов.
Список литературы
1. Straszewski-Chavez, S.L., Abrahams, V.M., and Mor, G. (2005) The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy, Endocr. Rev., 26, 877–897, doi: 10.1210/er.2005-0003.
2. Romanski, A., Uherek, C., Bug, G., Seifried, E., Klingemann, H., Wels, W.S., Ottmann, O.G., and Tonn, T. (2016) CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies, J. Cell. Mol. Med., 20, 1287–1294, doi: 10.1111/jcmm.12810.
3. Crespo, A.C., Strominger, J.L., and Tilburgs, T. (2016) Expression of KIR2DS1 by decidual natural killer cells increases their ability to control placental HCMV infection, Proc. Natl. Acad. Sci. USA, 113, 15072–15077, doi: 10.1073/pnas.1617927114.
4. Liu, Y., Zhang, L., Gao, M., Zhang, F., Xu, X., Liu, X., and Hu, X. (2013) Changes of inhibitory receptors on NK-92 cells and HLA-G on BeWo cells with Toxoplasma gondii infection, Inflammation, 36, 1440–1447, doi: 10.1007/s10753-013-9684-1.
5. Matson, B.C., and Caron, K.M. (2014) Uterine natural killer cells as modulators of the maternal-fetal vasculature, Int. J. Dev. Biol., 58, 199–204, doi: 10.1387/ijdb.140032kc.
6. Manaster, I., and Mandelboim, O. (2010) The unique properties of uterine NK cells, Am. J. Reprod. Immunol., 63, 434–444, doi: 10.1111/j.1600-0897.2009.00794.x.
7. Vacca, P., Pietra, G., Falco, M., Romeo, E., Bottino, C., Bellora, F., Prefumo, F., Fulcheri, E., Venturini, P.L., Costa, M., Moretta, A., Moretta, L., and Mingari, M.C. (2006) Analysis of natural killer cells isolated from human decidua: Evidence that 2B4 (CD244) functions as an inhibitory receptor and blocks NK-cell function, Blood, 108, 4078–4085, doi: 10.1182/blood-2006-04-017343.
8. Koopman, L.A., Kopcow, H.D., Rybalov, B., Boyson, J.E., Orange, J.S., Schatz, F., Masch, R., Lockwood, C.J., Schachter, A.D., Park, P.J., and Strominger, J.L. (2003) Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential, J. Exp. Med., 198, 1201–1212, doi: 10.1084/jem.20030305.
9. King, A., Wooding, P., Gardner, L., and Loke, Y.W. (1993) Expression of perforin, granzyme A and TIA-1 by human uterine CD56+ NK cells implies they are activated and capable of effector functions, Hum. Reprod., 8, 2061–2067, doi: 10.1093/oxfordjournals.humrep.a137982.
10. Lash, G.E., Robson, S.C., and Bulmer, J.N. (2010) Review: functional role of uterine natural killer (uNK) cells in human early pregnancy decidua, Placenta, 31 Suppl., 87–92, doi: 10.1016/j.placenta.2009.12.022.
11. Ivanisevic, M., Segerer, S., Rieger, L., Kapp, M., Dietl, J., Kammerer, U., and Frambach, T. (2010) Antigen-presenting cells in pregnant and non-pregnant human myometrium, Am. J. Reprod. Immunol., 64, 188–196, doi: 10.1111/j.1600-0897.2010.00858.x.
12. Kopcow, H.D., Allan, D.S., Chen, X., Rybalov, B., Andzelm, M.M., Ge, B., and Strominger, J.L. (2005) Human decidual NK cells form immature activating synapses and are not cytotoxic, Proc. Natl. Acad. Sci. USA, 102, 15563–15568, doi: 10.1073/pnas.0507835102.
13. Redzovic, A., Laskarin, G., Dominovic, M., Haller, H., and Rukavina, D. (2013) Mucins help to avoid alloreactivity at the maternal fetal interface, Clin. Dev. Immunol., 2013, 542152, doi: 10.1155/2013/542152.
14. Sun, J., Yang, M., Ban, Y., Gao, W., Song, B., Wang, Y., Zhang, Y., Shao, Q., Kong, B., and Qu, X. (2016) Tim-3 is upregulated in NK cells during early pregnancy and inhibits NK cytotoxicity toward trophoblast in galectin-9 dependent pathway, PLoS One, 11, e0147186, doi: 10.1371/journal.pone.0147186.
15. Langhans, B., Ahrendt, M., Nattermann, J., Sauerbruch, T., and Spengler, U. (2005) Comparative study of NK cell-mediated cytotoxicity using radioactive and flow cytometric cytotoxicity assays, J. Immunol. Methods, 306, 161–168, doi: 10.1016/j.jim.2005.08.010.
16. Shalini, S., Dorstyn, L., Dawar, S., and Kumar, S. (2015) Old, new and emerging functions of caspases, Cell Death Differ., 22, 526–539, doi: 10.1038/cdd.2014.216.
17. Jingting, C., Yangde, Z., Yi, Z., Huining, L., Rong, Y., and Yu, Z. (2007) Heparanase expression correlates with metastatic capability in human choriocarcinoma, Gynecol. Oncol., 107, 22–29, doi: 10.1016/j.ygyno.2007.05.042.
18. Kohler, P.O., and Bridson, W.E. (1971) Isolation of hormone-producing clonal lines of human choriocarcinoma, J. Clin. Endocrinol. Metab., 32, 683–687, doi: 10.1210/jcem-32-5-683.
19. Gong, J.H., Maki, G., and Klingemann, H.G. (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells, Leukemia, 8, 652–658.
20. Komatsu, F., and Kajiwara, M. (1998) Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells, Oncol. Res., 10, 483–489.
21. Coulomb-L’Hermine, A., Larousserie, F., Pflanz, S., Bardel, E., Kastelein, R.A., and Devergne, O. (2007) Expression of interleukin-27 by human trophoblast cells, Placenta, 28, 1133–1140, doi: 10.1016/j.placenta.2007.06.004.
22. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248–254.
23. Hedlund, M., Stenqvist, A.C., Nagaeva, O., Kjellberg, L., Wulff, M., Baranov, V., and Mincheva-Nilsson, L. (2009) Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function, J. Immunol., 183, 340–351, doi: 10.4049/jimmunol.0803477.
24. Lokossou, A.G., Toudic, C., and Barbeau, B. (2014) Implication of human endogenous retrovirus envelope proteins in placental functions, Viruses, 6, 4609–4627, doi: 10.3390/v6114609.
25. Hakam, M.S., Miranda-Sayago, J.M., Hayrabedyan, S., Todorova, K., Spencer, P.S., Jabeen, A., Barnea, E.R., and Fernandez, N. (2017) Preimplantation factor (PIF) promotes HLA-G, -E, -F, -C expression in JEG-3 choriocarcinoma cells and endogenous progesterone activity, Cell. Physiol. Biochem., 43, 2277–2296, doi: 10.1159/000484378.
26. Hanna, N., Hanna, I., Hleb, M., Wagner, E., Dougherty, J., Balkundi, D., Padbury, J., and Sharma, S. (2000) Gestational age-dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts, J. Immunol., 164, 5721–5728.
27. Knofler, M., and Pollheimer, J. (2012) IFPA Award in placentology lecture: molecular regulation of human trophoblast invasion, Placenta, 33, 55–62, doi: 10.1016/j.placenta.2011.09.019.
28. Rousalova, I., and Krepela, E. (2010) Granzyme B-induced apoptosis in cancer cells and its regulation (review), Int. J. Oncol., 37, 1361–1378.
29. Thiery, J., Keefe, D., Saffarian, S., Martinvalet, D., Walch, M., Boucrot, E., Kirchhausen, T., and Lieberman, J. (2010) Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis, Blood, 115, 1582–1593, doi: 10.1182/blood-2009-10-246116.
30. Thiery, J., Keefe, D., Boulant, S., Boucrot, E., Walch, M., Martinvalet, D., Goping, I.S., Bleackley, R.C., Kirchhausen, T., and Lieberman, J. (2011) Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells, Nat. Immunol., 12, 770–777, doi: 10.1038/ni.2050.
31. Lieberman, J. (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal, Nat. Rev. Immunol., 3, 361–370 doi: 10.1038/nri1083.
32. Orange, J.S., and Ballas, Z.K. (2006) Natural killer cells in human health and disease, Clin. Immunol., 118, 1–10, doi: 10.1016/j.clim.2005.10.011.
33. Hazeldine, J., and Lord, J.M. (2013) The impact of ageing on natural killer cell function and potential consequences for health in older adults, Ageing Res. Rev., 12, 1069–1078, doi: 10.1016/j.arr.2013.04.003.
34. Hammer, A., and Dohr, G. (2000) Expression of Fas-ligand in first trimester and term human placental villi, J. Reprod. Immunol., 46, 83–90.
35. Salvesen, G.S., and Walsh, C.M. (2014) Functions of caspase 8: the identified and the mysterious, Semin. Immunol., 26, 246–252, doi: 10.1016/j.smim.2014.03.005.
36. Feltham, R., Vince, J.E., and Lawlor, K.E. (2017) Caspase-8: not so silently deadly, Clin. Transl. Immunol., 6, e124, doi: 10.1038/cti.2016.83.
37. Cursi, S., Rufini, A., Stagni, V., Condo, I., Matafora, V., Bachi, A., Bonifazi, A.P., Coppola, L., Superti-Furga, G., Testi, R., and Barila, D. (2006) Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression, EMBO J., 25, 1895–1905, doi: 10.1038/sj.emboj.7601085.
38. Powley, I.R., Hughes, M.A., Cain, K., and MacFarlane, M. (2016) Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex, Oncogene, 35, 5629–5640, doi: 10.1038/onc.2016.99.
39. Cohen, G.M. (1997) Caspases: the executioners of apoptosis, Biochem. J., 326 (Pt. 1), 1–16.
40. Gauster, M., and Huppertz, B. (2010) The paradox of caspase 8 in human villous trophoblast fusion, Placenta, 31, 82–88, doi: 10.1016/j.placenta.2009.12.007.
41. Adler, R.R., Ng, A.K., and Rote, N.S. (1995) Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR, Biol. Reprod., 53, 905–910, doi: 10.1095/biolreprod53.4.905.
42. Wei, B.R., Xu, C., and Rote, N.S. (2012) Increased resistance to apoptosis during differentiation and syncytialization of BeWo choriocarcinoma cells, Adv. Biosci. Biotechnol., 3, 805–813, doi: 10.4236/abb.2012.326100.
43. Borges, M., Bose, P., Frank, H.G., Kaufmann, P., and Potgens, A.J. (2003) A two-colour fluorescence assay for the measurement of syncytial fusion between trophoblast-derived cell lines, Placenta, 24, 959–964, doi: 10.1016/S0143-4004(03)00173-5.
44. Al-Nasiry, S., Spitz, B., Hanssens, M., Luyten, C., and Pijnenborg, R. (2006) Differential effects of inducers of syncytialization and apoptosis on BeWo and JEG-3 choriocarcinoma cells, Hum. Reprod., 21, 193–201, doi: 10.1093/humrep/dei272.
45. Phillips, T.A., Ni, J., Pan, G., Ruben, S.M., Wei, Y.F., Pace, J.L., and Hunt, J.S. (1999) TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege, J. Immunol., 162, 6053–6059.
46. Yusuf, K., Smith, S.D., Sadovsky, Y., and Nelson, D.M. (2002) Trophoblast differentiation modulates the activity of caspases in primary cultures of term human trophoblasts, Pediatr. Res., 52, 411–415, doi: 10.1203/00006450-200209000-00018.
47. van Raam, B.J., and Salvesen, G.S. (2012) Proliferative versus apoptotic functions of caspase-8 Hetero or homo: the caspase-8 dimer controls cell fate, Biochim. Biophys. Acta, 1824, 113–122, doi: 10.1016/j.bbapap.2011.06.005.
48. Keller, N., Grutter, M.G., and Zerbe, O. (2010) Studies of the molecular mechanism of caspase-8 activation by solution NMR, Cell Death Differ., 17, 710–718, doi: 10.1038/cdd.2009.155.
49. Pop, C., Fitzgerald, P., Green, D.R., and Salvesen, G.S. (2007) Role of proteolysis in caspase-8 activation and stabilization, Biochemistry, 46, 4398–4407, doi: 10.1021/bi602623b.
50. Carrillo, I., Droguett, D., Castillo, C., Liempi, A., Munoz, L., Maya, J.D., Galanti, N., and Kemmerling, U. (2016) Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection, Exp. Parasitol., 168, 9–15, doi: 10.1016/j.exppara.2016.06.008.
51. Barnhart, B.C., and Peter, M.E. (2002) Two faces of caspase-8, Nat. Immunol., 3, 896–898, doi: 10.1038/ni1002-896.
52. Nakashima, A., Shiozaki, A., Myojo, S., Ito, M., Tatematsu, M., Sakai, M., Takamori, Y., Ogawa, K., Nagata, K., and Saito, S. (2008) Granulysin produced by uterine natural killer cells induces apoptosis of extravillous trophoblasts in spontaneous abortion, Am. J. Pathol., 173, 653–664, doi: 10.2353/ajpath.2008.071169.
53. Sweeney, E.A., Inokuchi, J., and Igarashi, Y. (1998) Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide, FEBS Lett., 425, 61–65.
54. Estebanez-Perpina, E., Fuentes-Prior, P., Belorgey, D., Braun, M., Kiefersauer, R., Maskos, K., Huber, R., Rubin, H., and Bode, W. (2000) Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue, Biol. Chem., 381, 1203–1214, doi: 10.1515/BC.2000.148.
55. Watt, W., Koeplinger, K.A., Mildner, A.M., Heinrikson, R.L., Tomasselli, A.G., and Watenpaugh, K.D. (1999) The atomic-resolution structure of human caspase-8, a key activator of apoptosis, Structure, 7, 1135–1143.
56. Afonina, I.S., Cullen, S.P., and Martin, S.J. (2010) Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B, Immunol. Rev., 235, 105–116, doi: 10.1111/j.0105-2896.2010.00908.x.
57. Morandi, F., and Pistoia, V. (2014) Interactions between HLA-G and HLA-E in physiological and pathological conditions, Front. Immunol., 5, 394, doi: 10.3389/fimmu.2014.00394.
58. Mikhailova, V.A., Bazhenov, D.O., Viazmina, L.P., Agnaeva, A.O., Bespalova, O.N., Sel’kov, S.A., and Sokolov, D.I. (2019) Cytotoxic activity of peripheral blood NK cells towards trophoblast cells during pregnancy, Bull. Exp. Biol. Med., 166, 567–573, doi: 10.1007/s10517-019-04393-4.
59. Park, D.W., Lee, H.J., Park, C.W., Hong, S.R., Kwak-Kim, J., and Yang, K.M. (2010) Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages, Am. J. Reprod. Immunol., 63, 173–180, doi: 10.1111/j.1600-0897.2009.00777.x.
60. Maki, G., Klingemann, H.G., Martinson, J.A., and Tam, Y.K. (2001) Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92, J. Hematother. Stem. Cell. Res., 10, 369–383, doi: 10.1089/152581601750288975.
61. Lash, G.E., Naruse, K., Robson, A., Innes, B.A., Searle, R.F., Robson, S.C., and Bulmer, J.N. (2011) Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production, Hum. Reprod., 26, 2289–2295, doi: 10.1093/humrep/der198.
62. Zhang, Y., Qu, D., Sun, J., Zhao, L., Wang, Q., Shao, Q., Kong, B., Zhang, Y., and Qu, X. (2016) Human trophoblast cells induced MDSCs from peripheral blood CD14(+) myelomonocytic cells via elevated levels of CCL2, Cell. Mol. Immunol., 13, 615–627, doi: 10.1038/cmi.2015.41.