БИОХИМИЯ, 2019, том 84, вып. 10, с. 1385–1400

УДК 616-006.04 + 612.015.39

Современные представления о метаболическом перепрограммировании в злокачественных новообразованиях

Обзор

© 2019 Д.А. Коршунов *, И.В. Кондакова, Е.Е. Шашова

Томский национальный исследовательский медицинский центр, 634009 Томск, Россия; электронная почта: ieved@ya.ru

Поступила в редакцию 01.03.2019
После доработки 06.05.2019
Принята к публикации 20.06.2019

DOI: 10.1134/S0320972519100026

КЛЮЧЕВЫЕ СЛОВА: эффект Варбурга, пентозофосфатный путь, глутамин, липогенез, ацетат.

Аннотация

Метаболическое перепрограммирование является одной из центральных особенностей трансформированных клеток. Постепенное выявление взаимодействия между сигнальными путями, специфичными для неоплазии, и клеточными метаболическими процессами привело к обширным исследованиям перепрограммирования метаболизма опухолей. В обзоре обобщены ключевые результаты о катаболических и анаболических перестройках в опухолевых клетках, в частности, рассмотрены особенности углеводного, липидного, аминокислотного и ацетатного обменов, участвующих в формировании фенотипа раковых клеток.

Сноски

* Адресат для корреспонденции.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Соблюдение этических норм

Данная статья не содержит исследований, в которых в качестве объектов использовали людей или животных.

Список литературы

1. Warburg, O. (1925) The metabolism of carcinoma cells, J. Cancer Res., 9, 148–163, doi: 10.1158/jcr.1925.148.

2. De Berardinis, R.J., and Chandel, N.S. (2016) Fundamentals of cancer metabolism, Sci. Adv., 2, e1600200, doi: 10.1126/sciadv.1600200.

3. Kuhajda, F.P., Jenner, K., Wood, F.D., Hennigar, R.A., Jacobs, L.B., Dick, J.D., and Pasternack, G.R. (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy, Proc. Natl. Acad. Sci. USA, 5, 6379–6383.

4. Hanahan, D., and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674, doi: 10.1016/j.cell.2011.02.013.

5. Liberti, M.V., and Locasale, J.W. (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci., 41, 211–218, doi: 10.1016/j.tibs.2015.12.001.

6. Ganapathy-Kanniappan, S. (2019) Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype, Crit. Rev. Biochem. Mol. Biol., 53, 667–682, doi: 10.1080/10409238.2018.1556578.

7. Ruprecht, B., Zaal, E.A., Zecha, J., Wu, W., Berkers, C.R., Kuster, B., and Lemeer, S. (2017) Lapatinib resistance in breast cancer cells is accompanied by phosphorylation-mediated reprogramming of glycolysis, Cancer Res., 77, 1842–1853, doi: 10.1158/0008-5472.CAN-16-2976.

8. Hudson, C.D., Hagemann, T., Mather, S.J., and Avril, N. (2014) Resistance to the tyrosine kinase inhibitor axitinib is associated with increased glucose metabolism in pancreatic adenocarcinoma, Cell Death Dis., 5, 1160, doi: 10.1038/cddis.2014.125.

9. Qian, X., Xu, W., Xu, J., Shi, Q., Li, J., Weng, Y. Jiang, Z., Feng, L., Wang, X., Zhou, J., and Jin, H. (2017) Enolase 1 stimulates glycolysis to promote chemoresistance in gastric cancer, Oncotarget, 8, 47691–47708, doi: 10.18632/oncotarget.17868.

10. Ye, M., Wang, S., Wan, T., Jiang, R., Qiu, Y., Pei, L., Pang, N., Huang, Y., Huang, Y., Zhang, Z., and Yang, L. (2017) Combined inhibitions of glycolysis and AKT/autophagy can overcome resistance to EGFR-targeted therapy of lung cancer, J. Cancer, 8, 3774–3784, doi: 10.7150/jca.21035.

11. Deng, X., Li, Z., Xiong, R., Liu, J., Liu, R., Peng, J., Chen, Y., Lei, X., Cao, X., Zheng, X., Xie, Z., and Tang, G. (2019) FS-7 inhibits MGC-803 cells growth in vitro and in vivo via downregulating glycolysis, Biomed. Pharmacother., 109, 1659–1669, doi: 10.1016/j.biopha.2018.11.001.

12. He, C., Wang, L., Zhang, J., and Xu, H. (2017) Hypoxia-inducible microRNA-224 promotes the cell growth, migration and invasion by directly targeting RASSF8 in gastric cancer, Mol. Cancer, 16, 35, doi: 10.1186/s12943-017-0603-1.

13. Xuan, Y., and Wang, Y.N. (2017) Hypoxia/IL-1α axis promotes gastric cancer progression and drug resistance, J. Dig. Dis., 18, 511–520, doi: 10.1111/1751-2980.12496.

14. Yu, F., White, S.B., Zhao, Q., and Lee, F.S. (2001) HIF–1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation, Proc. Natl. Acad. Sci. USA, 98, 9630–9635, doi: 10.1073/pnas.181341498.

15. Semenza, G.L. (2010) HIF-1: upstream and downstream of cancer metabolism, Curr. Opin. Genet. Dev., 20, 51–56, doi: 10.1016/j.gde.2009.10.009.

16. Bergeron, M., Gidday, J.M., Yu, A.Y., Semenza, G.L., Ferriero, D.M., and Sharp, F.R. (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain, Ann. Neurol., 48, 285–296, doi: 10.1002/1531-8249(200009)48:3<285::AID-ANA2>3.0.CO;2-8.

17. Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (2001) Activation of the HIF pathway in cancer, Curr. Opin. Genet. Dev., 11, 293–299, doi: 10.1016/S0959-437X(00)00193-3.

18. Ciuffreda, L., Falcone, I., Incani, U.C., Del Curatolo, A., Conciatori, F., Matteoni, S., Vari, S., Vaccaro, V., Cognetti, F., and Milella, M. (2014) PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting, Adv. Biol. Regul., 56, 66–80, doi: 10.1016/j.jbior.2014.07.002.

19. Hudson, C.C., Liu, M., Chiang, G.G., Otterness, D.M., Loomis, D.C., Kaper, F., Giaccia, A.J., and Abraham, R.T. (2002) Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamycin, Mol. Cell. Biol., 22, 7004–7014, doi: 10.1128/MCB.22.20.7004-7014.2002.

20. Woo, Y.M., Shin, Y., Lee, E.J., Lee, S., Jeong, S.H., Kong, H.K., Park, E.Y., Kim, H.K., Han, J., Chang, M., and Park, J.H. (2015) Inhibition of aerobic glycolysis represses Akt/mTOR/HIF-1α axis and restores tamoxifen sensitivity in antiestrogen-resistant breast cancer cells, PLoS One, 10, e0132285, doi: 10.1371/journal.pone.0132285.

21. Wilson, J.E. (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function, J. Exp. Biol., 206, 2049–2057, doi: 10.1242/jeb.00241.

22. Tsai, H.J., and Wilson, J.E. (1996) Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites, Arch. Biochem. Biophys., 329, 17–23, doi: 10.1006/abbi.1996.0186.

23. Wolf, A., Agnihotri, S., Micallef ,J., Mukherjee, J., Sabha, N., Cairns, R., Hawkins, C., and Guha, A. (2011) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme, J. Exp. Med., 208, 313–326, doi: 10.1084/jem.20101470.

24. Mathupala, S.P., Ko, Y.H., and Pedersen, P.L. (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria, Oncogene, 25, 4777–4786, doi: 10.1038/sj.onc.1209603.

25. Mathupala, S.P, Ko, Y.H, and Pedersen, P.L. (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy, Semin. Cancer Biol., 17–24, doi: 10.1016/j.semcancer.2008.11.006.

26. Lu, J., Wang, L., Chen, W., Wang, Y., Zhen, S., Chen, H., Cheng, J., Zhou, Y., Li, X., and Zhao, L. (2019) miR-603 targeted hexokinase-2 to inhibit the malignancy of ovarian cancer cells, Arch. Biochem. Biophys., 661, 1–9, doi: 10.1016/j.abb.2018.10.014.

27. Baumann, M., Kappl, A., Lang, T., Brand, K., Siegfried, W., and Paterok, E. (1990) The diagnostic validity of the serum tumor marker phosphohexose isomerase (PHI) in patients with gastrointestinal, kidney, and breast cancer, Cancer Invest., 8, 351–356, doi: 10.3109/07357909009012053.

28. Niinaka, Y., Paku, S., Haga, A., Watanabe, H., and Raz, A. (1998) Expression and secretion of neuroleukin/phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells, Cancer Res., 58, 2667–2674.

29. Funasaka, T., Haga, A., Raz, A., and Nagase, H. (2001) Tumor autocrine motility factor is an angiogenic factor that stimulates endothelial cell motility, Biochem. Biophys. Res. Commun., 284, 1116–1125, doi: 10.1006/bbrc.2001.5135.

30. Yanagawa, T., Funasaka, T., Tsutsumi, S., Watanabe, H., and Raz, A. (2004) Novel roles of the autocrine motility factor/phosphoglucose isomerase in tumor malignancy, Endocr. Relat. Cancer, 11, 749–759, doi: 10.1677/erc.1.00811.

31. Tsutsumi, S., Fukasawa, T., Yamauchi, H., Kato, T., Kigure, W., Morita, H., Asao, T., and Kuwano, H. (2009) Phosphoglucose isomerase enhances colorectal cancer metastasis, Int. J. Oncol., 35, 1117–1121, doi: 10.3892/ijo_00000427.

32. Funasaka, T., Yanagawa, T., Hogan, V., and Raz, A. (2005) Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia, FASEB J., 19, 1422–1430, doi: 10.1096/fj.05-3699com.

33. Funasaka, T., Hu, H., Yanagawa, T., Hogan, V., and Raz, A. (2007) Down-regulation of phosphoglucose isomerase/autocrine motility factor results in mesenchymal-to-epithelial transition of human lung fibrosarcoma cells, Cancer Res., 67, 4236–4243, doi: 10.1158/0008-5472.CAN-06-3935.

34. Shih, W.L., Liao, M.H., Yu, F.L., Lin, P.Y., Hsu, H.Y., and Chiu, S.J. (2008) AMF/PGI transactivates the MMP-3 gene through the activation of Src-RhoA-phosphatidylinositol 3-kinase signaling to induce hepatoma cell migration, Cancer Lett., 270, 202–217, doi: 10.1016/j.canlet.2008.05.005.

35. Song, S., and Finkel, T. (2007) GAPDH and the search for alternative energy, Nat. Cell. Biol., 9, 869–870, doi: 10.1038/ncb0807-869.

36. Bagui, S., Ray, M., and Ray, S. (1999) Glyceraldehyde-3-phosphate dehydrogenase from Ehrlich ascites carcinoma cells its possible role in the high glycolysis of malignant cells, Eur. J. Biochem., 262, 386–395, doi: 10.1046/j.1432-1327.1999.00384.x.

37. Mazurek, S. (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells, Int. J. Biochem. Cell Biol., 43, 969–980, doi: 10.1016/j.biocel.2010.02.005.

38. Dombrauckas, J.D., Santarsiero, B.D., and Mesecar, A.D. (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis, Biochemistry, 44, 9417–9429, doi: 10.1021/bi0474923.

39. Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O’Meally, R., Cole, R.N., Pandey, A., and Semenza, G.L. (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1, Cell, 145, 732–744, doi: 10.1016/j.cell.2011.03.054.

40. Lu, H., Forbes, R.A., and Verma, A. (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis, J. Biol. Chem., 277, 23111–23115, doi: 10.1074/jbc.M202487200.

41. Mazurek, S., Boschek, C.B., Hugo F., and Eigenbrodt, E. (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading, Semin. Cancer Biol., 15, 300–308, doi: 10.1016/j.semcancer.2005.04.009.

42. Christofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M., and Cantley, L.C. (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein, Nature, 452, 181–186, doi: 10.1038/nature06667.

43. Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L., and Cantley, L.C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth, Nature, 452, 230–233, doi: 10.1038/nature06734.

44. Mushtaq, M., Darekar, S., and Kashuba, E. (2016) DNA Tumor viruses and cell metabolism, Oxid. Med. Cell Longev., 2016, article ID 6468342, doi: 10.1155/2016/6468342.

45. Stincone, A., Prigione, A., Cramer, T., Wamelink, M.M. C., Campbell, K., Cheung, E., Olin-Sandoval, V., Gruning, N.M., Kruger, A., Tauqeer Alam, M., Keller, M.A., Breitenbach, M., Brindle, K.M., Rabinowitz, J.D., and Ralser, M. (2014) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway, Biol. Rev. Camb. Philos. Soc., 90, 927–963, doi: 10.1111/brv.12140.

46. Vucetic, M., Cormerais, Y., Parks, S.K., and Pouyssegur, J. (2017) The central role of amino acids in cancer redox homeostasis: vulnerability points of the cancer redox code, Front. Oncol., 7, 319, doi: 10.3389/fonc.2017.00319.

47. Shin, Y.K., Yoo, B.C., Hong, Y.S., Chang, H.J., Jung, K.H., Jeong, S.Y., and Park, J.G. (2009) Upregulation of glycolytic enzymes in proteins secreted from human colon cancer cells with 5-fluorouracil resistance, Electrophoresis, 30, 2182–2192, doi: 10.1002/elps.200800806.

48. Jones, N.P., and Schulze, A. (2012) Targeting cancer metabolism-aiming at a tumour’s sweet-spot, Drug Discov. Today, 17, 232–241, doi: 10.1016/j.drudis.2011.12.017.

49. Locasale, J.W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle, Nat. Rev. Cancer, 13, 572–583, doi: 10.1038/nrc3557.

50. Yuan, L., Sheng, X., Willson, A.K., Roque, D.R., Stine, J.E., Guo, H., Jones, H.M., Zhou, C., and Bae-Jump, V.L. (2015) Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway, Endocr. Relat. Cancer, 22, 577–5791, doi: 10.1530/ERC-15-0192.

51. Gonzalez Herrera, K.N., Lee, J., and Haigis, M.C. (2015) Intersections between mitochondrial sirtuin signaling and tumor cell metabolism, Crit. Rev. Biochem. Mol. Biol., 50, 242–255, doi: 10.3109/10409238.2015.1031879.

52. Gross, M.I., Demo, S.D., Dennison, J.B., Chen, L., Chernov-Rogan, T., Goyal, B., Janes, J.R., Laidig, G.J., Lewis, E.R., Li, J., Mackinnon, A.L., Parlati, F., Rodriguez, M.L., Shwonek, P.J., Sjogren, E.B., Stanton, T.F., Wang, T., Yang, J., Zhao, F., and Bennett, M.K. (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer, Mol. Cancer Ther., 13, 890–901, doi: 10.1158/1535-7163.MCT-13-0870.

53. Qing, G., Li, B., Vu, A., Skuli, N., Walton, Z.E., Liu, X., Mayes, P.A., Wise, D.R., Thompson, C.B., and Maris, J.M. (2012) ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation, Cancer Cell, 22, 631–644, doi: 10.1016/j.ccr.2012.09.021.

54. Cheng, T., Sudderth, J., Yang, C., Mullen, A.R., Jin, E.S., Mates, J.M., and De Berardinis, R.J. (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells, Proc. Natl. Acad. Sci. USA, 108, 8674–8679, doi: 10.1073/pnas.1016627108.

55. Zaidi, N., Swinnen, J.V., and Smans, K. (2012) ATP-citrate lyase: a key player in cancer metabolism, Cancer Res., 72, 3709–3714, doi: 10.1158/0008-5472.CAN-11-4112.

56. Brownsey, R.W., Boone, A.N., Elliott, J.E., Kulpa, J.E., and Lee, W.M. (2006) Regulation of acetyl-CoA carboxylase, Biochem. Soc. Trans., 34, 223–227, doi: 10.1042/BST20060223.

57. Maier, T., Leibundgut, M., and Ban, N. (2008) The crystal structure of a mammalian fatty acid synthase, Science, 321, 1315–1322, doi: 10.1126/science.1161269.

58. Jakobsson, A., Westerberg, R., and Jacobsson, A. (2006) Fatty acid elongases in mammals: their regulation and roles in metabolism, Prog. Lipid Res., 45, 237–249, doi: 10.1016/j.plipres.2006.01.004.

59. Yue, S., Li, J., Lee, S.Y., Lee, H.J., Shao, T., Song, B., Cheng, L., Masterson, T.A., Liu, X., Ratliff, T.L., and Cheng, J.X. (2014) Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness, Cell Metab., 19, 393–406, doi: 10.1016/j.cmet.2014.01.019.

60. Li, J. Bosch-Marce, M., Nanayakkara, A., Savransky, V., Fried, S.K., Semenza, G.L., and Polotsky, V.Y. (2006) Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1α, Physiol. Genom., 25, 450–457, doi: 10.1152/physiolgenomics.00293.2005.

61. Lewis, C.A., Brault, C., Peck, B. Bensaad, K., Griffiths, B., Mitter, R., Chakravarty, P., East, P., Dankworth, B., Alibhai, D., Harris, A.L., and Schulze, A. (2015) SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme, Oncogene, 43, 5128–5140, doi: 10.1038/onc.2014.439.

62. Amemiya-Kudo, M., Shimano, H., Hasty, A.H., Yahagi, N., Yoshikawa, T., Matsuzaka, T., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Osuga, J., Harada, K., Gotoda, T., Sato, R., Kimura, S., Ishibashi, S., and Yamada, N. (2002) Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes, J. Lipid Res., 43, 1220–1235, doi: 10.1194/jlr.M100417-JLR200.

63. Shimano, H., Yahagi, N., Amemiya-Kudo, M., Hasty, A.H., Osuga, J., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., Harada, K., Gotoda, T., Ishibashi, S., and Yamada, N. (1999) Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes, J. Biol. Chem., 274, 35832–35839, doi: 10.1074/jbc.274.50.35832.

64. Walker, A.K., Jacobs, R.L., Watts, J.L., Rottiers, V., Jiang, K., Finnegan, D.M., Shioda, T., Hansen, M., Yang, F., Niebergall, L.J., Vance, D.E., Tzoneva, M., Hart, A.C., and Naar, A.M. (2011) A conserved SREBP-1/Phosphatidylcholine feedback circuit regulates lipogenesis in metazoans, Cell, 147, 840–852, doi: 10.1016/j.cell.2011.09.045.

65. Porstmann, T., Santos, C.R., Griffiths, B., Cully, M., Wu, M., Leevers, S., Griffiths, J.R., Chung, Y.L., and Schulze, A. (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth, Cell Metab., 8, 224–236, doi: 10.1016/j.cmet.2008.07.007.

66. Finck, B.N., Gropler, M.C., Chen, Z., Leone, T.C., Croce, M.A., Harris, T.E., Lawrence, J.C. Jr., and Kelly, D.P. (2006) Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway, Cell Metab., 4, 199–210, doi: 10.1016/j.cmet.2006.08.005.

67. Brown, M.S., and Goldstein, J.L. (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor, Cell, 89, 331–340, doi: 10.1016/S0092-8674(00)80213-5.

68. Peterson T.R., Sengupta S.S., Harris T.E., Carmack A.E., Kang S.A., Balderas E., Guertin D.A., Madden K.L., Carpenter A.E., Finck B.N., and Sabatini D.M. (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway, Cell, 146, 408–420, doi: 10.1016/j.cell.2011.06.034.

69. Han, J., Li, E., Chen, L., Zhang, Y., Wei, F., Liu, J., Deng, H., and Wang, Y. (2015) The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1, Nature, 524, 243–246, doi: 10.1038/nature14557.

70. Welcker, M., and Clurman, B.E. (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation, Nat. Rev. Cancer, 8, 83–89, doi: 10.1038/nrc2290.

71. Sundqvist, A., Bengoechea-Alonso, M.T., Ye, X., Lukiyanchuk, V., Jin, J., Harper, J.W., and Ericsson, J. (2005) Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7), Cell Metab., 1, 379–391, doi: 10.1016/j.cmet.2005.04.010.

72. Bengoechea-Alonso, M.T., and Ericsson, J. (2009) A phosphorylation cascade controls the degradation of active SREBP1, J. Biol. Chem., 284, 5885–5895, doi: 10.1074/jbc.M807906200.

73. Dang, C.V. (2012) MYC on the path to cancer, Cell, 149, 22–35, doi: 10.1016/j.cell.2012.03.003.

74. Ventura, R., Mordec, K., Waszczuk, J., Wang, Z., Lai, J., Fridlib, M., Buckley, D., Kemble, G., and Heuer, T.S. (2015) Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression, EBioMedicine, 2, 806–820, doi: 10.1016/j.ebiom.2015.06.020.

75. Cai, Y. Crowther, J., Pastor, T., Abbasi Asbagh, L., Baietti, M.F., De Troyer, M., Vazquez, I., Talebi, A., Renzi, F., Dehairs, J., Swinnen, J.V., and Sablina, A.A. (2016) Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism, Cancer Cell, 29, 751–766, doi: 10.1016/j.ccell.2016.04.003.

76. Nohturfft, A., and Zhang, S.C. (2009) Coordination of lipid metabolism in membrane biogenesis, Annu. Rev. Cell Dev. Biol., 25, 539–566, doi: 10.1146/annurev.cellbio.24.110707.175344.

77. Espenshade, P.J., and Hughes, A.L. (2007) Regulation of sterol synthesis in eukaryotes, Annu. Rev. Genet., 41, 401–427, doi: 10.1146/annurev.genet.41.110306.130315.

78. Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver, J. Clin. Invest., 109, 1125–1131, doi: 10.1172/JCI15593.

79. Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C. (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption, Cell Metab., 3, 187–197, doi: 10.1016/j.cmet.2006.01.012.

80. Wise, D.R., Ward, P.S., Shay, J.E., Cross, J.R., Gruber, J.J., Sachdeva, U.M., Platt, J.M., DeMatteo, R.G., Simon, M.C., and Thompson, C.B. (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability, Proc. Natl. Acad. Sci. USA, 108, 19611–19616, doi: 10.1073/pnas.1117773108.

81. Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., Kelleher, J.K., Vander Heiden, M.G., Iliopoulos, O., and Stephanopoulos, G. (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia, Nature, 481, 380–384, doi: 10.1038/nature10602.

82. Kamphorst, J. J., Chung, M.K., Fan, J., and Rabinowitz, J.D. (2014) Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate, Cancer Metab., 2, 23, doi: 10.1186/2049-3002-2-23.

83. Kamphorst, J. J., Cross, J.R., Fan, J., de Stanchina, E., Mathew, R., White, E.P., Thompson, C.B., and Rabinowitz, J.D. (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids, Proc. Natl. Acad. Sci. USA, 110, 8882–8887, doi: 10.1073/pnas.1307237110.

84. Bensaad, K., Favaro, E., Lewis, C.A., Peck, B., Lord, S., Collins, J.M., Pinnick, K.E., Wigfield, S., Buffa, F.M., Li, J.L., Zhang, Q., Wakelam, M.J.O., Karpe, F., Schulze, A., and Harris, A.L. (2014) Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation, Cell Rep., 9, 349–365, doi: 10.1016/j.celrep.2014.08.056.

85. Michiels, C., Tellier, C., and Feron, O. (2016) Cycling hypoxia: a key feature of the tumor microenvironment, Biochim. Biophys. Acta, 1866, 76–86, doi: 10.1016/j.bbcan.2016.06.004.

86. Sinclair, C., Rowley, M., Naderi, A., and Couch, F. (2003) The 17q23 amplicon and breast cancer, Breast Cancer Res. Treat., 78, 313–322, doi: 10.1023/A:1023081624133.

87. Korshunov, D.A., Korshunova, Z.V., and Kondakova, I.V. (2016) Inhibitors of carbohydrate metabolism in cancer therapy, Mol. Med., 14, 3–7.

88. Medes, G., Friedmann, B., and Weinhouse, S. (1956) Fatty acid metabolism. VIII. Acetate metabolism in vitro during hepatocarcinogenesis by p-dimethylaminoazobenzene, Cancer Res., 16, 57–62.

89. Medes, G., and Weinhouse, S. (1958) Metabolism of neoplastic tissue. XIII. Substrate competition in fatty acid oxidation in ascites tumor cells, Cancer Res., 18, 352–359.

90. Medes, G., Paden, G., and Weinhouse, S. (1957) Metabolism of neoplastic tissues. XI. Absorption and oxidation of dietary fatty acids by implanted tumors, Cancer Res., 17, 127–133.

91. Suematsu, N., and Isohashi, F. (2006) Molecular cloning and functional expression of human cytosolic acetyl-CoA hydrolase, Acta. Biochim. Pol., 53, 553–561.

92. Horibata, Y., Ando, H., Itoh, M., and Sugimoto, H. (2013) Enzymatic and transcriptional regulation of the cytoplasmic acetyl-CoA hydrolase ACOT12, J. Lipid Res., 54, 2049–2059, doi: 10.1194/jlr.M030163.

93. Scheppach, W., Pomare, E.W., Elia, M., and Cummings, J.H. (1991) The contribution of the large intestine to blood acetate in man, Clin. Sci. (Lond.), 80, 177–182, doi: 10.1042/cs0800177.

94. Rey, F.E., Faith, J.J., Bain, J., Muehlbauer, M.J., Stevens, R.D., Newgard, C.B., and Gordon, J.I. (2010) Dissecting the in vivo metabolic potential of two human gut acetogens, J. Biol. Chem., 285, 22082–22090, doi: 10.1074/jbc.M110.117713.

95. Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P., and Macfarlane, G.T. (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood, Gut, 28, 1221–1227.

96. Bloemen, J.G. Venema, K., van de Poll, M.C., Olde Damink, S.W., Buurman, W.A., and Dejong, C.H. (2009) Short chain fatty acids exchange across the gut and liver in humans measured at surgery, Clin. Nutr., 28, 657–661, doi: 10.1016/j.clnu.2009.05.011.

97. Rocco, A., Compare, D., Angrisani, D., Sanduzzi Zamparelli, M., and Nardone, G. (2014) Alcoholic disease: liver and beyond, World J. Gastroenterol., 20, 14652–14659, doi: 10.3748/wjg.v20.i40.14652.

98. Schug, Z.T. Peck, B., Jones, D.T., Zhang, Q., Grosskurth, S., Alam, I.S., Goodwin, L.M., Smethurst, E., Mason, S., Blyth, K., McGarry, L., James, D., Shanks, E., Kalna, G., Saunders, R.E., Jiang, M., Howell, M., Lassailly, F., Thin, M.Z., Spencer-Dene, B., Stamp, G., van den Broek, N.J., Mackay, G., Bulusu, V., Kamphorst, J.J., Tardito, S., Strachan, D., Harris, A.L., Aboagye, E.O., Critchlow, S.E., Wakelam, M.J., Schulze, A., and Gottlieb, E. (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress, Cancer Cell, 27, 57–71, doi: 10.1016/j.ccell.2014.12.002.

99. Comerford, S.A., Huang, Z., Du, X., Wang, Y., Cai, L., Witkiewicz, A.K., Walters, H., Tantawy, M.N., Fu, A., Manning, H.C., Horton, J.D., Hammer, R.E., McKnight, S.L., and Tu, B.P. (2014) Acetate dependence of tumors, Cell, 159, 1591–1602, doi: 10.1016/j.cell.2014.11.020.

100. Wellen, K.E., Hatzivassiliou, G., Sachdeva, U.M., Bui, T.V., Cross, J.R., and Thompson, C.B. (2009) ATP-citrate lyase links cellular metabolism to histone acetylation, Science, 324, 1076–1080, doi: 10.1126/science.1164097.

101. Canfora, E.E., and Blaak, E.E. (2017) Acetate: a diet-derived key metabolite in energy metabolism: good or bad in context of obesity and glucose homeostasis? Curr. Opin. Clin. Nutr. Metab. Care, 20, 477–483, doi: 10.1097/MCO.0000000000000408.

102. Bauer, D.E., Hatzivassiliou, G., Zhao, F., Andreadis, C., and Thompson, C.B. (2005) ATP citrate lyase is an important component of cell growth and transformation, Oncogene, 24, 6314–6322, doi: 10.1038/sj.onc.1208773.

103. Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell Metab., 3, 177–185, doi: 10.1016/j.cmet.2006.02.002.

104. Spriet, L.L., Tunstall, R.J., Watt, M.J., Mehan, K.A., Hargreaves, M., and Cameron-Smith, D. (2004) Pyruvate dehydrogenase activation and kinase expression in human skeletal muscle during fasting, J. Appl. Physiol., 96, 2082–2087, doi: 10.1152/japplphysiol.01318.2003.

105. Hatzivassiliou, G., Zhao, F., Bauer, D.E., Andreadis, C., Shaw, A.N., Dhanak, D., Hingorani, S.R., Tuveson, D.A., and Thompson, C.B. (2005) ATP citrate lyase inhibition can suppress tumor cell growth, Cancer Cell, 8, 311–321, doi: 10.1016/j.ccr.2005.09.008.

106. Zaidi, N., Royaux, I., Swinnen, J.V., and Smans, K. (2012) ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms, Mol. Cancer Ther., 11, 1925–1935, doi: 10.1158/1535-7163.MCT-12-0095.

107. Mashimo, T., Pichumani, K., Vemireddy, V., Hatanpaa, K.J., Singh, D.K., Sirasanagandla, S., Nannepaga, S., Piccirillo, S.G., Kovacs, Z., Foong, C., Huang, Z., Barnett, S., Mickey, B.E., DeBerardinis, R.J., Tu, B.P., Maher, E.A., and Bachoo, R.M. (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases, Cell, 159, 1603–1614, doi: 10.1016/j.cell.2014.11.025.

108. Takahashi, H., McCaffery, J.M., Irizarry, R.A., and Boeke, J.D. (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription, Mol. Cell, 23, 207–217, doi: 10.1016/j.molcel.2006.05.040.

109. Gao, X., Lin, S.H., Ren, F., Li, J.T., Chen, J.J., Yao, C.B., Yang, H.B., Jiang, S.X., Yan, G.Q., Wang, D., Wang, Y., Liu, Y., Cai, Z., Xu, Y.Y., Chen, J., Yu, W., Yang, P.Y., and Lei, Q.Y. (2016) Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia, Nat. Commun., 7, 11960, doi: 10.1038/ncomms11960.

110. Nath, A., and Chan, C. (2016) Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers, Sci. Rep., 6, 18669, doi: 10.1038/srep18669.

111. Zaugg, K., Yao, Y., Reilly, P.T., Kannan, K., Kiarash, R., Mason, J., Huang, P., Sawyer, S.K., Fuerth, B., Faubert, B., Kalliomaki, T., Elia, A., Luo, X., Nadeem, V., Bungard, D., Yalavarthi, S., Growney, J.D., Wakeham, A., Moolani, Y., Silvester, J., Ten,A.Y., Bakker, W., Tsuchihara, K., Berger, S.L., Hill, R.P., Jones, R.G., Tsao, M., Robinson, M.O., Thompson, C.B., Pan, G., and Mak, T.W. (2011) Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress, Genes Dev., 25, 1041–1051, doi: 10.1101/gad.1987211.

112. Xu, M., Nagati, J.S., Xie, J., Li, J., Walters, H., Moon, Y.A., Gerard, R.D., Huang, C.L., Comerford, S.A., Hammer, R.E., Horton, J.D., Chen, R., and Garcia, J.A. (2014) An acetate switch regulates stress erythropoiesis, Nat. Med., 20, 1018–1026, doi: 10.1038/nm.3587.

113. Chen, R., Xu, M., Nagati, J.S., Hogg, R.T., Das, A., Gerard, R.D., and Garcia, J.A. (2015) The acetate/ACSS2 switch regulates HIF-2 stress signaling in the tumor cell microenvironment, PLoS One, 10, e0116515, doi: 10.1371/journal.pone.0116515.