БИОХИМИЯ, 2019, том 84, вып. 9, с. 1226–1243

УДК 571.27

Механизмы индукции антифосфолипидного синдрома. Роль NKT-клеток

Обзор

© 2019 С.В. Ширшев

Институт экологии и генетики микроорганизмов УрО РАН – филиал Пермского федерального исследовательского центра УрО РАН, 614081 Пермь, Россия; электронная почта: shirshev@iegm.ru

Поступила в редакцию 04.03.2019
После доработки 03.06.2019
Принята к публикации 03.06.2019

DOI: 10.1134/S0320972519090021

КЛЮЧЕВЫЕ СЛОВА: антифосфолипидный синдром, антифосфолипидные антитела, NKT-клетки, В-лимфоциты, гуморальный иммунный ответ.

Аннотация

В данном обзоре рассматриваются механизмы потенциального участия натуральных киллерных Т-клеток (NKT) в индукции антифосфолипидных антител, играющих основную патогенетическую роль в формировании антифосфолипидного синдрома. На основании литературных данных рассматриваются патогенез антифосфолипидного синдрома и современные аспекты формирования антител с участием фолликулярных хелперных NKT-клеток II типа. Представлено несколько потенциальных механизмов участия NKT-клеток в индукции антифосфолипидных антител.

Финансирование

Работа выполнена в рамках госзадания № 01201353248 «Механизмы регуляции иммунной системы».

Конфликт интересов

Конфликт интересов в финансовой или какой-либо иной сфере отсутствует.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных автором исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Mehdi, A.A., Uthman, I., and Khamashta, M. (2010) Antiphospholipid syndrome: pathogenesis and a window of treatment opportunities in the future, Eur. J. Clin. Invest., 40, 451–464, doi: 10.1111/j.1365-2362.2010.02281.x.

2. Arachchillage, D.R.J., and Laffan, M. (2017) Pathogenesis and management of antiphospholipid syndrome, Br. J. Haematol., 178, 1–15, doi: 10.1111/bjh.14632.

3. Ruiz-Irastorza, G., Crowther, M., Branch, W., and Khamashta, M.A. (2010) Antiphospholipid syndrome, Lancet, 376, 1498–1509, doi: 10.1016/S0140-6736(10)60709-X.

4. Miyakis, S., Lockshin, M.D., Atsumi, T., Branch, D.W., Brey, R.L., Cervera, R., Derksen, R.H., de Groot, P.G., Koike, T., Meroni, P.L., Reber, G., Shoenfeld, Y., Tincani, A., Vlachoyiannopoulos, P.G., and Krilis, S.A. (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS), J. Thromb. Haemost., 4, 295–306, doi: 10.1111/j.1538-7836.2006.01753.x.

5. Willis, R., and Pierangeli, S.S. (2013) Anti-β2-glycoprotein I antibodies, Ann. N. Y. Acad. Sci., 1285, 44–58, doi: 10.1111/nyas.12080.

6. Bas de Laat, H., Derksen, R.H., and de Groot, P.G. (2004) β2-glycoprotein I, the playmaker of the antiphospholipid syndrome, Clin. Immunol., 112, 161–168, doi: 10.1016/j.clim.2004.02.012.

7. Allen, K.L., Fonseca, F.V., Betapudi, V., Willard, B., Zhang, J., and McCrae, K.R. (2012) A novel pathway for human endothelial cell activation by antiphospholipid/anti-β2 glycoprotein I antibodies, Blood, 119, 884–893, doi: 10.1182/blood-2011-03-344671.

8. Sikara, M.P., Routsias, J.G., Samiotaki, M., Panayotou, G., Moutsopoulos, H.M., and Vlachoyiannopoulos, P.G. (2010) β2 Glycoprotein I (β2GPI) binds platelet factor 4 (PF4): implications for the pathogenesis of antiphospholipid syndrome, Blood, 115, 713–723, doi: 10.1182/blood-2009-03-206367.

9. Chamley, L.W., Allen, J.L., and Johnson, P.M. (1997) Synthesis of β2 glycoprotein 1 by the human placenta, Placenta, 18, 403–410, doi: 10.1016/S0143-4004(97)80040-9.

10. Agar, C., van Os, G.M., Morgelin, M., Sprenger, R.R., Marquart, J.A., Urbanus, R.T., Derksen, R.H., Meijers, J.C., and de Groot, P.G. (2010) β2-glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome, Blood, 116, 1336–1343, doi: 10.1182/blood-2009-12-260976.

11. Gardiner, C., Hills, J., Machin, S.J., and Cohen, H. (2013) Diagnosis of antiphospholipid syndrome in routine clinical practice, Lupus, 22, 18–25, doi: 10.1177/0961203312460722.

12. Vora, S.K., Asherson, R.A., and Erkan, D. (2006) Catastrophic antiphospholipid syndrome, J. Intensive Care Med., 21, 144–159, doi: 10.1007/s11420-008-9103-6.

13. Cervera, R., Serrano, R., Pons-Estel, G.J., Ceberio-Hualde, L., Shoenfeld, Y., de Ramon, E., Buonaiuto, V., Jacobsen, S., Zeher, M.M., Tarr, T., Tincani, A., Taglietti, M., Theodossiades, G., Nomikou, E., Galeazzi, M., Bellisai, F., Meroni, P.L., Derksen, R.H., de Groot, P.G., Baleva, M., Mosca, M., Bombardieri, S., Houssiau, F., Gris, J.C., Quere, I., Hachulla, E., Vasconcelos, C., Fernandez-Nebro, A., Haro, M., Amoura, Z., Miyara, M., Tektonidou, M., Espinosa, G., Bertolaccini, M.L., and Khamashta, M.A. (2015) Euro-Phospholipid Project, morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients, Ann. Rheum. Dis., 74, 1011–1018, doi: 10.1136/annrheumdis-2013-204838.

14. Cuadrado, M.J., Lopez-Pedrera, C., Khamashta, M.A., Camps, M.T., Tinahones, F., Torres, A., Hughes, G.R., and Velasco, F. (1997) Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression, Arthritis Rheum., 40, 834–841, doi: 10.1002/art.1780400509.

15. Breen, K.A., Seed, P., Parmar, K., Moore, G.W., Stuart-Smith, S.E., and Hunt, B.J. (2012) Complement activation in patients with isolated antiphospholipid antibodies or primary antiphospholipid syndrome, Thromb. Haemost., 107, 423–429, doi: 10.1160/TH11-08-0554.

16. Colosanti, T., Alessandri, C., Capozzi, A., Sorice, M., Delunardo, F., Longo, A., Pierdominici, M., Conti, F., Truglia, S., Siracusano, A., Valesini, G., Ortona, E., and Margutti, P. (2012) Autoantibodies specific to a peptide of β2-glycoprotein I cross-react with TLR4, inducing a proin-flammatory phenotype in endothelial cells and monocytes, Blood, 120, 3360–3370, doi: 10.1182/blood-2011-09-378851.

17. Xia, L., Xie, H., Yu, Y., Zhou, H., Wang, T., and Yan, J. (2016) The effects of NF-kB and c-Jun/AP-1 on the expression of prothrombotic and proinflammatory molecules induced by anti-β2GPI in mouse, PLoS One, 11, 1–17, doi: 10.1371/journal.pone.0147958.

18. Gropp, K., Weber, N., Reuter, M., Micklisch, S., Kopka, I., Hallstrom, T., and Skerka, C. (2011) β2-glycoprotein I, the major target inantiphospholipid syndrome, is a special human complement regulator, Blood, 118, 2774–2783, doi: 10.1182/blood-2011-02-339564.

19. Fischetti, F., Durigutto, P., Pellis, V., Debeus, A., Macor, P., Bulla, R., Bossi, F., Ziller, F., Sblattero, D., Meroni, P., and Tedesco, F. (2005) Thrombus formation induced by antibodies to β2-glycoprotein I is complement dependent and requires a priming factor, Blood, 106, 2340–2346, doi: 10.1182/blood-2005-03-1319.

20. Redecha, P., Tilley, R., Tencati, M., Salmon, J.E., Kirchhofer, D., Mackman, N., and Girardi, G. (2007) Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury, Blood, 110, 2423–2431, doi: 10.1182/blood-2007-01-070631.

21. Galli, M., Willems, G.M., Rosing, J., Janssen, R.M., Govers-Riemslag, J.W., Comfurius, P., Barbui, T., Zwaal, R.F., and Bevers, E.M. (2005) Anti-prothrombin IgG from patients with anti-phospholipid antibodies inhibits the inactivation of factor Va by activated protein C, Br. J. Haematol., 129, 240–247, doi: 10.1111/j.1365-2141.2005.05438.x.

22. Ieko, M., Yoshida, M., Naito, S., Nakabayashi, T., Kanazawa, K., Mizukami, K., Mukai, M., Atsumi, T., and Koike, T. (2010) Increase in plasma thrombin-activatable fibrinolysis inhibitor may not contribute to thrombotic tendency in antiphospholipid syndrome because of inhibitory potential of antiphospolipid antibodies toward TAFI activation, Int. J. Hematol., 91, 776–783, doi: 10.1007/s12185-010-0590-0.

23. Lean, S.Y., Ellery, P., Ivey, L., Thom, J., Oostryck, R., Leahy, M., Baker, R.I., and Adams, M.J. (2006) The effects of tissue factor pathway inhibitor and anti-β2-glycoprotein-I IgG on thrombin generation, Haematologica, 91, 1360–1366.

24. Yunt, B.J., Wu, X.X., de Laat, B., Arslan, A.A., Stuart-Smith, S., and Rand, J.H. (2011) Resistance to annexin A5 anticoagulant activity in women with histories for obstetric antiphospholipid syndrome, Am. J. Obstet. Gynecol., 205, 485.e17–485.e23, doi: 10.1016/j.ajog.2011.06.019.

25. Du, V.X., Kelchtermans, H., de Groot, P.G., and de Laat, B. (2013) From antibody to clinical phenotype, the black box of the antiphospholipid syndrome: pathogenic mechanisms of the antiphospholipid syndrome, Thromb. Res., 132, 319–326, doi: 10.1016/j.thromres.2013.07.023.

26. Romay-Penabad, Z., Montiel-Manzano, M.G., Shilagard, T., Papalardo, E., Vargas, G., Deora, A.B., Wang, M., Jacovina, A.T., Garcia-Latorre, E., Reyes-Maldonado, E., Hajjar, K.A., and Pierangeli, S.S. (2009) Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo, Blood, 114, 3074–3083, doi: 10.1182/blood-2008-11-188698.

27. Ulrich, V., Gelber, S.E., Vukelic, M., Sacharidou, A., Herz, J., Urbanus, R.T., de Groot, P.G., Natale, D.R., Harihara, A., Redecha, P., Abrahams, V.M., Shaul, P.W., Salmon, J.E., and Mineo, C. (2016) ApoE receptor 2 mediation of trophoblast dysfunction and pregnancy complications induced by antiphospholipid antibodies in mice, Arthritis Rheumatol., 68, 730–739, doi: 10.1002/art.39453.

28. Pennings, M.T., van Lummel, M., Derksen, R.H., Urbanus, R.T., Romijn, R.A., Lenting, P.J., and de Groot, P.G. (2006) Interaction of β2-glycoprotein I wth members of the low density lipoprotein receptor family, J. Thromb. Haemost., 4, 1680–1690, doi: 10.1111/j.1538-7836.2006.02036.x.

29. Satta, N., Kruithof, E.R., Fickentscher, C., Dunoyer-Geindre, S., Boehlen, F., Reber, G., Burger, D., and de Moerloose, P. (2011) Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies, Blood, 117, 5523–5531, doi: 10.1182/blood-2010-11-316158.

30. Pierangeli, S.S., Vega-Ostertag, M.E., Raschi, E., Liu, X., Romay-Penabad, Z., De Micheli, V., Galli, M., Moia, M., Tincani, A., Borghi, M.O., Nguyen-Oghalai, T., and Meroni, P.L. (2007) Toll-like receptor and antipholipid mediated thrombosis: in vivo studies, Ann. Rheum. Dis., 66, 1327–1333, doi: 10.1136/ard.2006.065037.

31. Urbanus, R.T., Pennings, M.T., Derksen, R.H., and de Groot, P.G. (2008) Platelet activation by dimeric β2-glycoprotein I requires signaling via both glycoprotein Ibα and apolipoprotein E receptor 2’, J. Thromb. Haemost., 6, 1405–1412, doi: 10.1111/j.1538-7836.2008.03021.x.

32. Tanimura, K., Jin, H., Suenaga, T., Morikami, S., Arase, N., Kishida, K., Hirayasu, K., Kohyama, M., Ebina, Y., Yasuda, S., Horita, T., Takasugi, K., Ohmura, K., Yamamoto, K., Katayama, I., Sasazuki, T., Lanier, L.L., Atsumi, T., Yamada, H., and Arase, H. (2015) β2-Glycoprotein I/HLA class II complexes are novel autoantigens in antiphospholipid syndrome, Blood, 125, 2835–2844, doi: 10.1182/blood-2014-08-593624.

33. Domenico Sebastiani, G., Minisola, G., and Galeazzi, M. (2003) HLA class II alleles and genetic predisposition to the antiphospholipid syndrome, Autoimmun. Rev., 2, 387–394, doi: 10.1016/S1568-9972(03)00068-5.

34. Collins, T., Krman, A.J., Wake, C.T., Boss, J.M., Kappes, D.J., Fiers, W., Ault, K.A., Gimbrone, M.A., Jr., Strominger, J.L., and Pober, J.S. (1984) Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts, Proc. Natl. Acad. Sci. USA, 81, 4917–4921, doi: 10.1073/pnas.81.15.4917.

35. Girardi, G., Berman, J., Redecha, P., Spruce, L., Thurman, J.M., Kraus, D., Hollmann, T.J., Casali, P., Caroll, M.C., Wetsel, R.A., Lambris, J.D., Holers, V.M., and Salmon, J.E. (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospolipid syndrome, J. Clin. Invest., 112, 1644–1654, doi: 10.1172/JCI18817.

36. Kasahara, H., Matsuura, E., Kaihara, K., Yamamoto, D., Kobayashi, K., Inagaki, J., Ichikawa, K., Tsutsumi, A., Yasuda, S., Atsumi, T., Yasuda, T., and Koike, T. (2005) Antigenic structures recognized by anti-β2-glycoprotein I auto-antibodies, Int. Immunol., 17, 1533–1542, doi: 10.1093/intimm/dxh330.

37. Xia, L., Zhou, H., Hu, L., Xie, H., Wang, T., Xu, Y., Liu, J., Zhang, X., and Yan, J. (2013) Both NF-κB and c-Jun/AP-1 involved in anti-β2GPI/β2GPI-induced tissue factor expression in monocytes, Thromb. Haemost., 109, 643–651, doi: 10.1160/TH12-09-0655.

38. Mackman, N. (1995) Regulation of the tissue factor gene, FASEB J., 9, 883–889, doi: 10.1096/fasebj.9.10.7615158.

39. Boles, J., and Mackman, N. (2010) Role of tissue factor in thrombosis in antiphospholipid antibody syndrome, Lupus, 19, 370–378, doi: 10.1177/0961203309360810.

40. Vega-Ostertag, M., Harris, E.N., and Puerangeli, S.S. (2004) Intercellular events in platelet activation induced by antiphospholipid antibodies in the presence of low doses of thrombin, Arthritis Rheum., 50, 2911–2919, doi: 10.1002/art.20434.

41. Vega-Ostertag, M., Casper, K., Swerlick, R., Ferrara, D., Harris, E.N., and Pierangeli, S.S. (2005) Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies, Arthritis Rheum., 52, 1545–1554, doi: 10.1002/art.21009.

42. Zhou, H., Sheng, L., Wang, H., Xie, H., Mu, Y., Wang, T., and Yan, J. (2013) Anti-β2GPI/β2GPI stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-κB signaling pathways, Thromb. Res., 132, 742–749, doi: 10.1016/j.thromres.2013.09.039.

43. Canaud, G., Bienaime, F., Tabarin, F., Bataillon, G., Seilhean, D., Noel, L.H., Dragon-Durey, M.A., Snanoudj, R., Friedlander, G., Halbwachs-Mecarelli, L., Legendre, C., and Terzi, F. (2014) Inhibition of the mTORC pathway in the antiphospholipid syndrome, N. Engl. J. Med., 371, 303–312, doi: 10.1056/NEJMoa1312890.

44. Sciascia, S., Sanna, G., Murru, V., Roccatello, D., Khamashta, M.A., and Bertolaccini, M.L. (2014) Anti-prothrombin (aPT) and antiphosphatidylserine/protrombin (aPS/PT) antibodies and the risk of thrombosis in the antiphospholipid syndrome. A systematic review, Thromb. Haemost., 111, 354–364, doi: 10.1160/TH13-06-0509.

45. Gharavi, A.E., Wilson, W., and Pierangeli, S. (2003) The molecular basis of antiphospolipid syndrome, Lupus, 12, 579–583, doi: 10.1191/0961203303lu448rr.

46. Blank, M., Krause, I., Fridkin, M., Keller, N., Kopolovic, J., Goldberg, I., Tobar, A., and Shoenfeld, Y. (2002) Bacterial induction of autoantibodies to β2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome, J. Clin. Invest., 109, 797–804, doi: 10.1172/JCI12337.

47. Miyakis, S., Giannakopoulos, B., and Krilis, S.A. (2004) Beta 2 glycoprotein I – function in health and disease, Thromb. Res., 114, 335–346, doi: 10.1016/j.thromres.2004.07.017.

48. Iverson, G.M., Victoria, E.J., and Marquis, D.M. (1998) Anti-β2 glycoprotein I (β2GPI) autoantibodies recognize an epitope on the first domain of β2GPI, Proc. Natl. Acad. Sci. USA, 95, 15542–15546.

49. Andreoli, L., Chighizola, C.B., Nalli, C., Gerosa, M., Borghi, M.O., Pregnolato, F., Grossi, C., Zanola, A., Allegri, F., Norman, G.L., Mahler, M., Meroni, P.L., and Tincani, A. (2015) Clinical characterization of antiphospholipid syndrome by detection of IgG antibodies against β2-glycoprotein I domain 1 and domain 4/5: ratio of anti-domain 1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome, Arthritis Rheumatol., 67, 2196–2204, doi: 10.1002/art.39187.

50. Agostinis, C., Durigutto, P., Sblattero, D., Borghi, M.O., Grossi, C., Guida, F., Bulla, R., Macor, P., Pregnolato, F., Meroni, P.L., and Tedesco, F. (2014) A non-complement-fixing antibody to β2 glycoprotein I as a novel therapy for antiphospholipid syndrome, Blood, 123, 3478–3487, doi: 10.1182/blood-2013-11-537704.

51. Iannou, Y., Romay-Penabad, Z., Pericleous, C., Giles, I., Papalardo, E., Vargas, G., Shilagard, T., Latchman, D.S., Isenberg, D.A., Rahman, A., and Pierangeli S. (2009) In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of β2-glycoprotein I: proof of concept, J. Thromb. Haemost., 7, 833–842, doi: 10.1111/j.1538-7836.2009.03316.x.

52. Harris, E.N., Gharavi, A.E., Patel, S.P., and Hughes, G.R.V. (1987) Evaluation of the anti-cardiolipin antibody test: report of an international workshop held 4 April 1986, Clin. Exp. Immunol., 68, 215–222.

53. Gharavi, A.E., Harris, E.N., Asherson, R.A., and Hughes, G.R.V. (1987) Anticardiolipin antibodies: isotype distribution and phospholipid specificity, Ann. Rheum. Dis., 46, 1–6, doi: 10.1136/ard.46.1.1.

54. Loizou, S., Mackworth-Young, C.G., Cofiner, C., and Walport, M.J. (1990) Heterogeneity of binding reactivity to different phospholipids of antibodies from patients with systemic lupus erythematosus (SLE) and with syphilis, Clin. Exp. Immunol., 80, 171–176, doi: 10.1111/j.1365-2249.1990.tb05228.x.

55. Vinuesa, C.G., and Chang, P.P. (2013) Innate B cell helpers reveal novel types of antibody responses, Nat. Immunol., 14, 119–126, doi: 10.1038/ni.2511.

56. Ansel, K.M., Ngo, V.N., Hyman, P.L., Luther, S.A., Forster, R., Sedgwick, J.D., Browning, J.L., Lipp, M., and Cyster, J.G. (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles, Nature, 406, 309–314, doi: 10.1038/35018581.

57. Gunn, M.D., Tangemann, K., Tam, C., Cyster, J.G., Rosen, S.D., and Williams, L.T. (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes, Proc. Natl. Acad. Sci. USA, 95, 258–263, doi: 10.1073/pnas.95.1.258.

58. Batista, F.D., and Harwood, N.E. (2009) The who, how and where of antigen presentation to B cells, Nat. Rev. Immunol., 9, 15–27, doi: 10.1038/nri2454.

59. Ebert, L.M., Horn, M.P., Lang, A.B., and Moser, B. (2004) B cells alter the phenotype and function of follicular-homing CXCR5+ T cells, Eur. J. Immunol., 34, 3562–3571, doi: 10.1002/eji.200425478.

60. Celli, S., Lemaitre, F., and Bousso, P. (2007) Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation, Immunity, 27, 625–634, doi: 10.1016/j.immuni.2007.08.018.

61. Fazilleau, N., McHeyzer-Williams, L.J., Rosen, H., and McHeyzer-Williams, M.G. (2009) The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding, Nat. Immunol., 10, 375–384, doi: 10.1038/ni.1704.

62. Walker, L.S., Gulbranson-Judge, A., Flynn, S., Brocker, T., Raykundalia, C., Goodall, M., Forster, R., Lipp, M., and Lane, P. (1999) Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers, J. Exp. Med., 190, 1115–1122, doi: 10.1084/jem.190.8.1115.

63. Okada, T., Miller, M.J., Parker, I., Krummel, M.F., Neighbors, M., Hartley, S.B., O’Garra, A., Cahalan, M.D., and Cyster, J.G. (2005) Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells, PLoS Biol., 3, e150, doi: 10.1371/journal.pbio.0030150.

64. McHeyzer-Williams, L.J., Pelletier, N., Mark, L., Fazilleau, N., and McHeyzer-Williams, M.G. (2009) Follicular helper T cells as cognate regulators of cell immunity, Curr. Opin. Immunol., 21, 266–273, doi: 10.1016/j.coi.2009.05.010.

65. Johnston, R.J., Poholek, A.C., DiToro, D., Yusuf, I., Eto, D., Barnett, B., Dent, A.L., Craft, J., and Crotty, S. (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation, Science, 325, 1006–1010, doi: 10.1126/science.1175870.

66. Suan, D., Nguyen, A., Moran,I., Bourne, K., Hermes, J.R., Arshi, M., Hampton, H.R., Tomura, M., Miwa, Y., Kelleher, A.D., Kaplan, W., Deenick, E.K., Tangye, S.G., Brink, R., Chtanova, T., and Phan, T.G. (2015) T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses, Immunity, 42, 704–718, doi: 10.1016/j.immuni.2015.03.002.

67. Klein, U., and Dalla-Favera, R. (2008) Germinal centers: role in B-cell physiology and malignancy, Nat. Rev. Immunol., 8, 22–33, doi: 10.1038/nri2217.

68. Victora, G.D., and Nussenzweig, M.C. (2012) Germinal centers, Annu. Rev. Immunol., 30, 429–457, doi: 10.1146/annurev.iy.12.040194.001001.

69. Gitlin, A.D., Shulman, Z., and Nussenzweig, M.C. (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation, Nature, 509, 637–640, doi: 10.1038/nature13300.

70. Crotty, S. (2011) Follicular helper CD4 T cells (TFH), Annu. Rev. Immunol., 29, 621–663, doi: 10.1146/annurev-immunol-031210-101400.

71. Dufaud, C.R., McHeyzer-Williams, L.J., and McHeyzer-Williams, M.G. (2017) Deconstructing the germinal center, one cell at a time, Curr. Opin. Immunol., 45, 112–118, doi: 10.1016/j.coi.2017.03.007.

72. Allen, C.D.C., Okada, T., Tang, H.L., and Cyster, J.G. (2007) Imaging of germinal center selection events during affinity maturation, Science, 315, 528–531, doi: 10.1126/science.1136736.

73. Shapiro-Shelef, M., and Calame, K. (2005) Regulation of plasma-cell development, Nat. Rev. Immunol., 5, 230–242, doi: 10.1038/nri1572.

74. Mendez, L.M., Polo, J.M., Yu, J.J., Krupski, M., Ding, B.B., Melnick, A., and Ye, B.H. (2008) CtBP is an essential corepressor for BCL6 autoregulation, Mol. Cell. Biol., 28, 2175–2186, doi: 10.1128/MCB.01400-07.

75. Shapiro-Shelef, M., Lin, K.I., McHeyzer-Williams, L.J., Liao, J., McHeyzer-Williams, M.G., and Calame, K. (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells, Immunity, 19, 607–620, doi: 10.1016/S1074-7613(03)00267-X.

76. Reinhardt, R., Liang, H., and Locksley, R. (2009) Cytokine-secreting follicular T cells shape the antibody repertoire, Nat. Immunol., 10, 385–393, doi: 10.1038/ni.1715.

77. Scaerli, P., Willimann, K., Lang, A.B., Lipp, M., Loetscher, P., and Moser, B. (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function, J. Exp. Med., 192, 553–562, doi: 10.1084/jem.192.11.1553.

78. Good-Jacobson, K.L., Szumilas, C.G., Chen, L., Sharpe, A.H., Tomayko, M.M., and Shlomchik, M.J. (2010) PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells, Nat. Immunol., 11, 535–542, doi: 10.1038/ni.1877.

79. Linterman, M.A., Beaton, L., Yu, D., Ramiscal, R.R., Srivastava, M., Hogan, J.J., Verma, N.K., Smyth, M.J., Rigby, R.J., and Vinuesa, C.G. (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses, J. Exp. Med., 207, 353–363, doi: 10.1084/jem.20091738.

80. Bendelac, A., Savage, P.B., and Teyton, L. (2007) The biology of NKT cells, Annu. Rev. Immunol., 25, 297–336, doi: 10.1146/annurev.immunol.25.022106.141711.

81. Morita, M., Natori, T., Sakai, T., Sawa, E., Yamaji, K., Koezuka, Y., Kobayashi, E., and Fukushima, H. (1995) Structure-activity relationship of α-galactosylceramides against B16-bearing mice, J. Med. Chem., 38, 2176–2187, doi: 10.1021/jm00012a018.

82. Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., Koseki, H., and Taniguchi, M. (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides, Science, 278, 1626–1629, doi: 10.1126/science.278.5343.1626.

83. Barral, D.C., and Brenner, M.B. (2007) CD1 antigen presentation: how it works, Nat. Rev. Immunol., 7, 929–941, doi: 10.1038/nri2191.

84. Godfrey, D.I., Rossjohn, J., and McCluskey, J. (2008) The fidelity, occasional promiscuity, and versatility of T cell receptor recognition, Immunity, 28, 304–314, doi: 10.1016/j.immuni.2008.02.004.

85. Brossay, L., Chioda, M., Burdin, N., Koezuka, Y., Casorati, G., Dellabona, P., and Kronenberg, M. (1998) CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells highly conserved through mammalian evolution, J. Exp. Med., 188, 1521–1528, doi: 10.1084/jem.188.8.1521.

86. De Libero, G., and Mori, L. (2006) Mechanisms of lipid-antigen generation and presentation to T cells, Trends Immunol., 27, 485–492, doi: 10.1016/j.it.2006.08.001.

87. Macho-Fernandez, E., and Brigl, M. (2015) The extended family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions, Front. Immunol., 6, 1–19, doi: 10.3389/fimmu.2015.00362.

88. Kronenberg, M. (2005) Toward an understanding of NKT cell biology: progress and paradoxes, Annu. Rev. Immunol., 23, 877–900, doi: 10.1146/annurev.immunol.23.021704.115742.

89. Fais, F., Morabito, F., Stelitano, C., Callea, V., Zanardi, S., Scudeletti, M., Varese, P., Ciccone, E., and Grossi, C.E. (2004) CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates α-galactosylceramide presentation to natural killer T lymphocytes, Int. J. Cancer, 109, 402–411, doi: 10.1002/ijc.11723.

90. Boyson, J.E., Rybalov, B., Koopman, L.A., Exley, M., Balk, S.P., Racke, F.K., Schatz, F., Masch, R., Wilson, S.B., and Strominger, J.L. (2002) CD1d and invariant NKT cells at the human maternal-fetal interface, Proc. Natl. Acad. Sci. USA, 99, 13741–13746, doi: 10.1073/pnas.162491699.

91. Barral, P., Exkl-Dorna, J., Harwood, N.E., De Santo, C., Salio, M., Illarionov, P., Besra, G.S., Cerundolo, V., and Batista, F.D. (2008) B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo, Proc. Natl. Acad. Sci. USA, 105, 8345–8350, doi: 10.1073/pnas.0802968105.

92. Leadbetter, E.A., Brigl, M., Illarionov, P., Cohen, N., Luteran, M.C., Pillai, S., Besra, G.S., and Brenner, M.B. (2008) NK T cells provide lipid antigen-specific cognate help for B cells, Proc. Natl. Acad. Sci. USA, 105, 8339–8344, doi: 10.1073/pnas.0801375105.

93. Dellabona, P., Abrignani, S., and Casorati, G. (2014) iNKT-cell help to B cells: a cooperative job between innate and adaptive immune responses, Eur. J. Immunol., 44, 2230– 2237, doi: 10.1002/eji.201344399.

94. Vomhof-DeKrey, E.E., Yates, J., and Leadbetter, E.A. (2014) Invariant NKT cells provide innate and adaptive help for B cells, Curr. Opin. Immunol., 28, 12–17, doi: 10.1016/j.coi.2014.01.007.

95. Chang, P.P., Barral, P., Fitch, J., Pratama, A., Ma, C.S., Kallies, A., Hogan, J.J., Cerundolo, V., Tangye, S.G., Bittman, R., Nutt, S.L., Brink, R., Godfrey, D.I., Batista, F.D., and Vinuesa, C.G. (2012) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses, Nat. Immunol., 13, 35–43, doi: 10.1038/ni.2166.

96. King, I.L., Fortier, A., Tighe, M., Dibble, J., Watts, G.F., Veerapen, N., Haberman, A.M., Besra, G.S., Mohrs, M., Brenner, M.B., and Leadbetter, E.A. (2012) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner, Nat. Immunol., 13, 44–50, doi: 10.1038/ni.2172.

97. Mattner, J., Savage, P.B., Leung, P., Oertelt, S.S., Wang, V., Trivedi, O., Scanlon, S.T., Pendem, K., Teyton, L., Hart, J., Ridgway, W.M., Wicker, L.S., Gershwin, M.E., and Bendelac, A. (2008) Liver autoimmunity triggered by microbial activation of natural killer T cells, Cell Host Microbe, 3, 304–315, doi: 10.1016/j.chom.2008.03.009.

98. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L., and Steinman, R.M. (2003) Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministreted protein, J. Exp. Med., 198, 267–279, doi: 10.1084/jem.20030324.

99. Nair, S., Boddupalli, C.S., Verma, R., Liu, J., Yang, R., Pastores, G.M., Mistry, P.K., and Dhodapkar, M.V. (2015) Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation, Blood, 125, 1256–1271, doi: 10.1182/blood-2014-09-600270.

100. Mistry, P.K., Taddei, T., von Dahl, S., and Rosenblom, B.E. (2013) Gaucher disease and malignancy: a model for cancer pathogenesis in an inbom error of metabolism, Crit. Rev. Oncol., 18, 235–246, doi: 10.1615/CritRevOncog.2013006145.

101. Zeng, S.G., Ghnewa, Y.G., O’Reilly, V.P., Lyons, V.G., Atzberger, A., Hogan, A.E., Exley, M.A., and Doherty, D.G. (2013) Human invariant NKT cell subsets differentiation, antibody production, and T cell stimulation by B cells in vitro, J. Immunol., 191, 1666–1676, doi: 10.4049/jimmunol.1202223.

102. Exley, M.A., Tahir, S.M., Cheng, O., Shaulov, A., Joyce, R., Avigan, D., Sackstein, R., and Balk, S.P. (2001) A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses, J. Immunol., 167, 5531–5534, doi: 10.4049/jimmunol.167.10.5531.

103. Gumperz, J.E., Roy, C., Makowska, A., Lum, D., Sugita, M., Podrebarac, T., Koezukan, Y., Porcelli, S.A., Cardell, S., Brenner, M.B., and Behar, S.M. (2000) Murine CD1d-restricted T cell recognition of cellular lipids, Immunity, 12, 211–221, doi: 10.1016/S1074-7613(00)80174-0.

104. Zhao, J., Weng, X., Bagchi, S., and Wang, C.R. (2014) Policlonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response, Proc. Natl. Acad. Sci. USA, 111, 2674–2679, doi: 10.1073/pnas.1323845111.

105. Weng, X., Liao, C.M., Bagchi, S., Cardell, S.L., Stein, P.L., and Weng, C.R. (2014) The adaptor protein SAP regulates type II NKT cell development, cytokine production and cytotoxicity against lymphoma, Eur. J. Immunol., 44, 3634–3657, doi: 10.1002/eji.201444848.

106. Sallo, M., Silk, J.D., Jones, E.Y., and Cerundolo, V. (2014) Bilogy of CD1-and MR1-restricted T cells, Annu. Rev. Immunol., 32, 323–366, doi: 10.1146/annurev-immunol-032713-120243.

107. Liu, K., Idoyaga, J., Charalambous, A., Fujii, S., Bonito, A., Mordoh, J., Wainstok, R., Bai, X.F., Liu, Y., and Steinman, R.M. (2005) Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells, J. Exp. Med., 202, 1507–1516, doi: 10.1084/jem.20050956.

108. Allan, L.L., Hoefl, K., Zheng, D.J., Chung, B.K., Kozak, F.K., Tan, R., and van den Elzen, P. (2009) Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells, Blood, 114, 2411–2416, doi: 10.1182/blood-2009-04-211417.

109. Tonti, E., Galli, G., Malzone, C., Abrignani, S., Casorati, G., and Dellabona, P. (2009) NKT-cell help to B lymphocytes can occur independently of cognate interaction, Blood, 113, 370–376, doi: 10.1182/blood-2008-06-166249.

110. King, I.L., Amiel, E., Tighe, M., Mohrs, K., Veerapen, N., Besra, G., Mohrs, M., and Leadbetter, E.A. (2013) The mechanism of splenic invariant NKT cell activation dictates localization in vivo, J. Immunol., 191, 572–582, doi: 10.4049/jimmunol.1300299.

111. Shah, H.B., Joshi, S.K., Rampuria, P., Devera, T.S., Lang, G.A., Stohl, W., and Lang, M.L. (2013) BAFF- and APRIL-dependent maintenance of antibody titers after immunization with T-dependent antigen and CD1d-binding ligand, J. Immunol., 191, 1154–1163, doi: 10.4049/jimmunol.1300263.