БИОХИМИЯ, 2019, том 84, вып. 9, с. 1211–1225

УДК 576.5

Роль системы активаторов плазминогена в патогенезе эпилепсии

Обзор

© 2019 А.А. Шмакова 1, К.А. Рубина 1, К.В. Анохин 2, В.А. Ткачук 1,3, Е.В. Семина 1,3*

Московский государственный университет им. М.В. Ломоносова, факультет фундаментальной медицины, лаборатория генных и клеточных технологий, 119192 Москва, Россия

Институт перспективных исследований мозга, Московский государственный университет им. М.В. Ломоносова, 119991 Москва, Россия; электронная почта: k.anokhin@gmail.com

Национальный медицинский исследовательский центр кардиологии Минздрава России, лаборатория молекулярной эндокринологии, 121552 Москва, Россия; электронная почта: e-semina@yandex.ru

Поступила в редакцию 11.02.2019
После доработки 15.05.2019
Принята к публикации 27.05.2019

DOI: 10.1134/S032097251909001X

КЛЮЧЕВЫЕ СЛОВА: система активаторов плазминогена, урокиназа, урокиназный рецептор, тканевой активатор плазминогена, головной мозг, эпилепсия.

Аннотация

Долгое время внимание исследователей, занимающихся изучением механизмов нарушений ЦНС, было обращено на нейродегенеративные процессы и ишемические состояния, приводящие к развитию болезней Альцгеймера, Паркинсона, сосудистой деменции и др. В последние десятилетия появились сведения о том, что имеются генетические факторы риска развития этих заболеваний; благодаря современным достижениям в области биохимии и молекулярной биологии появилась возможность изучать взаимосвязи между факторами риска, способствующими развитию данных патологий, и белками-мишенями, находящимися под контролем генетического аппарата, а также выявлять нарушения в процессе формирования и функционирования головного мозга, возникающие в эмбриогенезе и раннем онтогенезе вследствие мутаций или полиморфизмов генов, регулирующих процесс прорастания аксонов, кровеносных сосудов, формирования глии и миграции нейронов. Одними из основных молекул, вовлеченных в патогенез нейродегенеративных состояний и таких патологий, как эпилепсия, шизофрения и расстройства аутистического спектра, являются навигационные рецепторы, экспрессия которых регулирует направление роста аксонов и формирование нейрональных сетей и когнитивных функций. В последнее время заметно возрос интерес к участию системы активаторов плазминогена в различных физиологических и патологических состояниях в ЦНС. Наши ранее опубликованные данные свидетельствуют о важной роли этих белков в навигационных процессах, регулирующих не только скорость роста аксонов, но и траекторию их роста и ветвление. В обзоре впервые проанализированы данные литературы о механизмах участия системы активаторов плазминогена при патологических состояниях головного мозга на примере эпилепсии.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при поддержке Российского научного фонда (проект № 19-75-30007; поиск и анализ данных литературы, написание и оформление обзора) и Российского фонда фундаментальных исследований (проект № 17-04-00386; оформление рисунков в программе Adobe Illustrator CC 2017).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных авторами исследований с участием людей и использованием животных в качестве объектов.

Список литературы

1. Pitkanen, A., Ndode-Ekane, X.E., Lukasiuk, K., Wilczynski, G.M., Dityatev, A., Walker, M.C., Chabrol, E., Dedeurwaerdere, S., Vazquez, N., and Powell, E.M. (2014) Neural ECM and epilepsy, Prog. Brain Res., 214, 229–262, doi: 10.1016/B978-0-444-63486-3.00011-6.

2. Semina, E., Rubina, K., Sysoeva, V., Rysenkova, K., Klimovich, P., Plekhanova, O., and Tkachuk, V. (2016) Urokinase and urokinase receptor participate in regulation of neuronal migration, axon growth and branching, Eur. J. Cell Biol., 95, 295–310, doi: 10.1016/j.ejcb.2016.05.003.

3. Merino, P., Diaz, A., Jeanneret, V., Wu, F., Torre, E., Cheng, L., and Yepes, M. (2017) Urokinase-type plasminogen activator (uPA) binding to the uPA receptor (uPAR) promotes axonal regeneration in the central nervous system, J. Biol. Chem., 292, 2741–2753, doi: 10.1074/jbc.M116.761650.

4. Bruneau, N., and Szepetowski, P. (2011) The role of the urokinase receptor in epilepsy, in disorders of language, cognition, communication and behavior, and in the central nervous system, Curr. Pharm. Des., 17, 1914–1923, doi: 10.2174/138161211796718198.

5. Morales, D., McIntosh, T., Conte, V., Fujimoto, S., Graham, D., Grady, M.S., and Stein, S.C. (2006) Impaired fibrinolysis and traumatic brain injury in mice, J. Neurotrauma, 23, 976–984, doi: 10.1089/neu.2006.23.976.

6. Yepes, M. (2018) The plasminogen activation system promotes neurorepair in the ischemic brain, Curr. Drug Targets, 20, 953–959, doi: 10.2174/1389450120666181211144550.

7. Abramovici, S., and Bagic, A. (2016) Epidemiology of epilepsy, Handb. Clin. Neurol., 138, 159–171, doi: 10.1016/B978-0-12-802973-2.00010-0.

8. Авакян Г.Н. (2014) Эпидемиология эпилепсии и оптимизация медикаментозной терапии фокальных эпилепсий, Эпилепсия и пароксизмальные состояния, 6, 3–5.

9. Карлов В.А. (2005) Учение об эпилептической системе. Заслуга отечественной научной школы, Эпилепсия и пароксизмальные состояния, 9, 76–85.

10. Калинина Д.С., Ганина О.Р., Вольнова А.Б., Журавин И.А. (2014) Патологические состояния мозга: использование животных моделей для исследования эпилепсии, Здоровье – основа человеческого потенциала: проблемы и пути их решения, 1, 127–130.

11. Mehra, A., Ali, C., Parcq, J., Vivien, D., and Docagne, F. (2016) The plasminogen activation system in neuroinflammation, Biochim. Biophys. Acta, 1862, 395–402, doi: 10.1016/j.bbadis.2015.10.011.

12. Smith, H.W., and Marshall, C.J. (2010) Regulation of cell signalling by uPAR, Nat. Rev. Mol. Cell Biol., 11, 23–36, doi: 10.1038/nrm2821.

13. Blasi, F., and Carmeliet, P. (2002) uPAR: a versatile signalling orchestrator, Nat. Rev. Mol. Cell Biol., 3, 932–943, doi: 10.1038/nrm977.

14. Medcalf, R.L. (2017) Fibrinolysis: from blood to the brain, J. Thromb. Haemost., 15, 2089–2098, doi: 10.1111/jth.13849.

15. Baron, A., Montagne, A., Casse, F., Launay, S., Maubert, E., Ali, C., and Vivien, D. (2010) NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity, Cell Death Differ., 17, 860–871, doi: 10.1038/cdd.2009.172.

16. Fredriksson, L., Lawrence, D.A., and Medcalf, R.L. (2017) tPA modulation of the blood-brain barrier: a unifying explanation for the pleiotropic effects of tPA in the CNS, Semin. Thromb. Hemost., 43, 154–168, doi: 10.1055/s-0036-1586229.

17. Shi, Y., Mantuano, E., Inoue, G., Campana, W.M., and Gonias, S.L. (2009) Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway, Sci. Signal., 2, ra18, doi: 10.1126/scisignal.2000188.

18. Montuori, N., Carriero, M.V., Salzano, S., Rossi, G., and Ragno, P. (2002) The cleavage of the urokinase receptor regulates its multiple functions, J. Biol. Chem., 277, 46932–46939, doi: 10.1074/jbc.M207494200.

19. Qian, Z., Gilbert, M.E., Colicos, M.A., Kandel, E.R., and Kuhl, D. (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation, Nature, 361, 453–457, doi: 10.1038/361453a0.

20. Yepes, M., Sandkvist, M., Coleman, T.A., Moore, E., Wu, J.Y., Mitola, D., Bugge, T.H., and Lawrence, D.A. (2002) Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent, J. Clin. Invest., 109, 1571–1578, doi: 10.1172/JCI14308.

21. Benarroch, E.E. (2007) Tissue plasminogen activator, Neurology, 69, 799–802, doi: 10.1212/01.wnl.0000269668.08747.78.

22. Merino, P., Diaz, A., and Yepes, M. (2017) Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) promote neurorepair in the ischemic brain, Receptors Clin. Investig., 4, e1552.

23. Sashindranath, M., Sales, E., Daglas, M., Freeman, R., Samson, A.L., Cops, E.J., Beckham, S., Galle, A., McLean, C., Morganti-Kossmann, C., Rosenfeld, J.V., Madani, R., Vassalli, J.D., Su, E.J., Lawrence, D.A., and Medcalf, R.L. (2012) The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans, Brain, 135, 3251–3264, doi: 10.1093/brain/aws178.

24. Czekay, R.P., Wilkins-Port, C.E., Higgins, S.P., Freytag, J., Overstreet, J.M., Klein, R.M., Higgins, C.E., Samarakoon, R., and Higgins, P.J. (2011) PAI-1: an integrator of cell signaling and migration, Int. J. Cell Biol., 2011, 1–9, doi: 10.1155/2011/562481.

25. Lee, T.W., Tsang, V.W.K., Loef, E.J., and Birch, N.P. (2017) Physiological and pathological functions of neuroserpin: regulation of cellular responses through multiple mechanisms, Semin. Cell Dev. Biol., 62, 152–159, doi: 10.1016/j.semcdb.2016.09.007.

26. Yepes, M., Sandkvist, M., Wong, M.K., Coleman, T.A., Smith, E., Cohan, S.L., and Lawrence, D.A. (2000) Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis, Blood, 96, 569–576.

27. Reumann, R., Vierk, R., Zhou, L., Gries, F., Kraus, V., Mienert, J., Romswinkel, E., Morellini, F., Ferrer, I., Nicolini, C., Fahnestock, M., Rune, G., Glatzel, M., and Galliciotti, G. (2017) The serine protease inhibitor neuroserpin is required for normal synaptic plasticity and regulates learning and social behavior, Learn. Mem., 24, 650–659, doi: 10.1101/lm.045864.117.

28. Yepes, M., and Lawrence, D.A. (2004) Neuroserpin: a selective inhibitor of tissue-type plasminogen activator in the central nervous system, Thromb. Haemost., 91, 457–464, doi: 10.1160/TH03-12-0766.

29. Ortolano, S., and Spuch, C. (2013) tPA in the central nervous system: relations between tPA and cell surface LRPs, Recent Pat. Endocr. Metab. Immune Drug Discov., 7, 65–76, doi: 10.2174/1872214811307010065.

30. Bi Oh, S., Suh, N., Kim, I., and Lee, J.Y. (2015) Impacts of aging and amyloid-β deposition on plasminogen activators and plasminogen activator inhibitor-1 in the Tg2576 mouse model of Alzheimer’s disease, Brain Res., 1597, 159–167, doi: 10.1016/j.brainres.2014.11.042.

31. Gerenu, G., Martisova, E., Ferrero, H., Carracedo, M., Rantamaki, T., Ramirez, M.J., and Gil-Bea, F.J. (2017) Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 991–1001, doi: 10.1016/j.bbadis.2017.01.023.

32. Liu, R.M., van Groen, T., Katre, A., Cao, D., Kadisha, I., Ballinger, C., Wang, L., Carroll, S.L., and Li, L. (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease, Neurobiol. Aging, 32, 1079–1089, doi: 10.1016/j.neurobiolaging.2009.06.003.

33. Семина Е.В., Рубина К.А., Степанова В.В., Ткачук В.А. (2016) Участие рецептора урокиназы и его эндогенных лигандов в развитии головного мозга и формировании когнитивных функций, Российский физиологический журнал им. И.М. Сеченова, 102, 881–903.

34. Рубина К.А., Семина Е.А., Балацкая М.Н., Плеханова О.С., Ткачук В.А. (2018) Механизмы регуляции направленного роста нервов и сосудов компонентами фибринолитической системы и GPI-заякоренными навигационными рецепторами, Российский физиологический журнал им. И.М. Сеченова, 104, 1001–1026, doi: 10.7868/S0869813918090010.

35. Barinka, C., Parry, G., Callahan, J., Shaw, D.E., Kuo, A., Bdeir, K., Cines, D.B., Mazar, A., and Lubkowski, J. (2006) Structural basis of interaction between urokinase-type plasminogen activator and its receptor, J. Mol. Biol., 363, 482–495, doi: 10.1016/j.jmb.2006.08.063.

36. Sharonov, G.V., Balatskaya, M.N., and Tkachuk, V.A. (2016) Glycosylphosphatidylinositol-anchored proteins as regulators of cortical cytoskeleton, Biochemistry (Moscow), 81, 844–859, doi: 10.1134/S0006297916060110.

37. Lino, N., Fiore, L., Rapacioli, M., Teruel, L., Flores, V., Scicolone, G., and Sanchez, V. (2014) uPA-uPAR molecular complex is involved in cell signaling during neuronal migration and neuritogenesis, Dev. Dyn., 243, 676–689, doi: 10.1002/dvdy.24114.

38. Farias-Eisner, R., Vician, L., Silver, A., Reddy, S., Rabbani, S.A., and Herschman, H.R. (2000) The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation, J. Neurosci., 20, 230–239, doi: 10.1523/JNEUROSCI. 20-01-00230.2000.

39. Eden, G., Archinti, M., Furlan, F., Murphy, R., and Degryse, B. (2011) The urokinase receptor interactome, Curr. Pharm. Des., 17, 1874–1889, doi: 10.2174/138161211796718215.

40. Jo, M., Thomas, K.S., O’Donnell, D.M., and Gonias, S.L. (2003) Epidermal growth factor receptor-dependent and -independent cell-signaling pathways originating from the urokinase receptor, J. Biol. Chem., 278, 1642–1646, doi: 10.1074/jbc.M210877200.

41. D’Alessio, S., and Blasi, F. (2009) The urokinase receptor as an entertainer of signal transduction, Front. Biosci., 14, 4575–4587, doi: 10.2741/3550.

42. Nykjar, A., Conese, M., Christensen, E.I., Olson, D., Cremona, O., Gliemann, J., and Blasi, F. (1997) Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes, EMBO J., 16, 2610–2620, doi: 10.1093/emboj/16.10.2610.

43. Seeds, N.W., Basham, M.E., and Haffke, S.P. (1999) Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene, Proc. Natl. Acad. Sci. USA, 96, 14118–14123, doi: 10.1073/pnas.96.24.14118.

44. Shin, S.M., Cho, K.S., Choi, M.S., Lee, S.H., Han, S.-H., Kang, Y.S., Kim, H.J., Cheong, J.H., Shin, C.Y., and Ko, K.H. (2010) Urokinase-type plasminogen activator induces BV-2 microglial cell migration through activation of matrix metalloproteinase-9, Neurochem. Res., 35, 976–985, doi: 10.1007/s11064-010-0141-3.

45. Lee, S.H., Ko, H.M., Kwon, K.J., Lee, J., Han, S.H., Han, D.W., Cheong, J.H., Ryu, J.H., and Shin, C.Y. (2014) tPA regulates neurite outgrowth by phosphorylation of LRP5/6 in neural progenitor cells, Mol. Neurobiol., 49, 199–215, doi: 10.1007/s12035-013-8511-x.

46. Powell, E.M., Campbell, D.B., Stanwood, G.D., Davis, C., Noebels, J.L., and Levitt, P. (2003) Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction, J. Neurosci., 23, 622–631, doi: 10.1523/JNEUROSCI.23-02-00622.2003.

47. Eagleson, K.L., Bonnin, A., and Levitt, P. (2005) Region- and age-specific deficits in γ-aminobutyric acidergic neuron development in the telencephalon of the uPAR–/– mouse, J. Comp. Neurol., 489, 449–466, doi: 10.1002/cne.20647.

48. Lahtinen, L., Huusko, N., Myohanen, H., Lehtivarjo, A.K., Pellinen, R., Turunen, M.P., Yla-Herttuala, S., Pirinen, E., and Pitkanen, A. (2009) Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus, Neuroscience, 163, 316–328, doi: 10.1016/j.neuroscience.2009.06.019.

49. Zarnadze, S., Bauerle, P., Santos-Torres, J., Bohm, C., Schmitz, D., Geiger, J.R., Dugladze, T., and Gloveli, T. (2016) Cell-specific synaptic plasticity induced by network oscillations, Elife, 5, e14912, doi: 10.7554/eLife.14912.

50. Levitt, P. (2005) Disruption of interneuron development, Epilepsia, 46, 22–28, doi: 10.1111/j.1528-1167.2005.00305.x.

51. Powell, E.M., Mars, W.M., and Levitt, P. (2001) Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon, Neuron, 30, 79–89, doi: 10.1016/S0896-6273(01)00264-1.

52. Bolkvadze, T., Puhakka, N., and Pitkanen, A. (2016) Epileptogenesis after traumatic brain injury in Plaur-deficient mice, Epilepsy Behav., 60, 187–196, doi: 10.1016/j.yebeh.2016.04.038.

53. Ndode-Ekane, X.E., and Pitkanen, A. (2013) Urokinase-type plasminogen activator receptor modulates epileptogenesis in mouse model of temporal lobe epilepsy, Mol. Neurobiol., 47, 914–937, doi: 10.1007/s12035-012-8386-2.

54. Bae, M.H., Bissonette, G.B., Mars, W.M., Michalopoulos, G.K., Achim, C.L., Depireux, D.A., and Powell, E.M. (2010) Hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility, Exp. Neurol., 221, 129–135, doi: 10.1016/j.expneurol.2009.10.011.

55. Bolkvadze, T., Rantala, J., Puhakka, N., Andrade, P., and Pitkanen, A. (2015) Epileptogenesis after traumatic brain injury in Plau-deficient mice, Epilepsy Behav., 51, 19–27, doi: 10.1016/j.yebeh.2015.06.037.

56. Rantala, J., Kemppainen, S., Ndode-Ekane, X.E., Lahtinen, L., Bolkvadze, T., Gurevicius, K., Tanila, H., and Pitkanen, A. (2015) Urokinase-type plasminogen activator deficiency has little effect on seizure susceptibility and acquired epilepsy phenotype but reduces spontaneous exploration in mice, Epilepsy Behav., 42, 117–128, doi: 10.1016/j.yebeh.2014.11.001.

57. Lahtinen, L., Ndode-Ekane, X.E., Barinka, F., Akamine, Y., Esmaeili, M.H., Rantala, J., and Pitkanen, A. (2010) Urokinase-type plasminogen activator regulates neurodegeneration and neurogenesis but not vascular changes in the mouse hippocampus after status epilepticus, Neurobiol. Dis., 37, 692–703, doi: 10.1016/j.nbd.2009.12.008.

58. Pawlak, R., Rao, B.S., Melchor, J.P., Chattarji, S., McEwen, B., and Strickland, S. (2005) Tissue plasminogen activator and plasminogen mediate stress-induced decline of neuronal and cognitive functions in the mouse hippocampus, Proc. Natl. Acad. Sci. USA, 102, 18201–18206, doi: 10.1073/pnas.0509232102.

59. Vezzani, A. (2005) Tissue plasminogen activator, neuroserpin, and seizures, Epilepsy Curr., 5, 130, doi: 10.1111/J.1535-7511.2005.00041.X.

60. Campbell, D.B., Li, C., Sutcliffe, J.S., Persico, A.M., and Levitt, P. (2008) Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder, Autism Res., 1, 159–168, doi: 10.1002/aur.27.

61. Zandifar, A., Soleimani, S., Iraji, N., Haghdoost, F., Tajaddini, M., and Javanmard, S.H. (2014) Association between promoter region of the uPAR (rs344781) gene polymorphism in genetic susceptibility to migraine without aura in three Iranian hospitals, Clin. Neurol. Neurosurg., 120, 45–48, doi: 10.1016/j.clineuro.2014.02.003.

62. Roll, P., Rudolf, G., Pereira, S., Royer, B., Scheffer, I.E., Massacrier, A., Valenti, M.P., Roeckel-Trevisiol, N., Jamali, S., Beclin, C., Seegmuller, C., Metz-Lutz, M.N., Lemainque, A., Delepine, M., Caloustian, C., Martin, A. de Saint, Bruneau, N., Depetris, D., Mattei, M.G., Flori, E., Robaglia-Schlupp, A., Levy, N., Neubauer, B.A., Ravid, R., Marescaux, C., Berkovic, S.F., Hirsch, E., Lathrop, M., Cau, P., and Szepetowski, P. (2006) SRPX2 mutations in disorders of language cortex and cognition, Hum. Mol. Genet., 15, 1195–1207, doi: 10.1093/hmg/ddl035.

63. Samson, A.L., and Medcalf, R.L. (2006) Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity, Neuron, 50, 673–678, doi: 10.1016/j.neuron.2006.04.013.

64. Seeds, N.W., Basham, M.E., and Ferguson, J.E. (2003) Absence of tissue plasminogen activator gene or activity impairs mouse cerebellar motor learning, J. Neurosci., 23, 7368–7375, doi: 10.1523/JNEUROSCI.23-19-07368.2003.

65. Madani, R., Hulo, S., Toni, N., Madani, H., Steimer, T., Muller, D., and Vassalli, J.D. (1999) Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice, EMBO J., 18, 3007–3012, doi: 10.1093/emboj/18.11.3007.

66. Bennur, S., Shankaranarayana Rao, B.S., Pawlak, R., Strickland, S., McEwen, B.S., and Chattarji, S. (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator, Neuroscience, 144, 8–16, doi: 10.1016/j.neuroscience.2006.08.075.

67. Tsirka, S.E., Gualandris, A., Amaral, D.G., and Strickland, S. (1995) Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator, Nature, 377, 340–344, doi: 10.1038/377340a0.

68. Beschorner, R., Schluesener, H.J., Nguyen, T.D., Magdolen, V., Luther, T., Pedal, I., Mattern, R., Meyermann, R., and Schwab, J.M. (2000) Lesion-associated accumulation of uPAR/CD87-expressing infiltrating granulocytes, activated microglial cells/macrophages and upregulation by endothelial cells following TBI and FCI in humans, Neuropathol. Appl. Neurobiol., 26, 522–527, doi: 10.1046/j.0305-1846.2000.287.x.

69. Walker, D.G., Lue, L.F., and Beach, T.G. (2002) Increased expression of the urokinase plasminogen-activator receptor in amyloid beta peptide-treated human brain microglia and in AD brains, Brain Res., 926, 69–79, doi: 10.1016/S0006-8993(01)03298-X.

70. Washington, R.A., Becher, B., Balabanov, R., Antel, J., and Dore-Duffy, P. (1996) Expression of the activation marker urokinase plasminogen-activator receptor in cultured human central nervous system microglia, J. Neurosci. Res., 45, 392–399, doi: 10.1002/(SICI)1097-4547(19960815)45:4<392::AID-JNR8>3.0.CO;2-4.

71. Cunningham, O., Campion, S., Perry, V.H., Murray, C., Sidenius, N., Docagne, F., and Cunningham, C. (2009) Microglia and the urokinase plasminogen activator receptor/uPA system in innate brain inflammation, Glia, 57, 1802–1814, doi: 10.1002/glia.20892.

72. Choi, J., and Koh, S. (2008) Role of brain inflammation in epileptogenesis, Yonsei Med. J., 49, 1–18, doi: 10.3349/ymj.2008.49.1.1.

73. Nagai, N., Okada, K., Kawao, N., Ishida, C., Ueshima, S., Collen, D., and Matsuo, O. (2008) Urokinase-type plasminogen activator receptor (uPAR) augments brain damage in a murine model of ischemic stroke, Neurosci. Lett., 432, 46–49, doi: 10.1016/j.neulet.2007.12.004.

74. Gur-Wahnon, D., Mizrachi, T., Maaravi-Pinto, F.Y., Lourbopoulos, A., Grigoriadis, N., Higazi, A.A., and Brenner, T. (2013) The plasminogen activator system: involvement in central nervous system inflammation and a potential site for therapeutic intervention, J. Neuroinflammation, 10, 891, doi: 10.1186/1742-2094-10-124.

75. Deininger, M.H., Trautmann, K., Magdolen, V., Luther, T., Schluesener, H.J., and Meyermann, R. (2002) Cortical neurons of Creutzfeldt–Jakob disease patients express the urokinase-type plasminogen activator receptor, Neurosci. Lett., 324, 80–82, doi: 10.1016/S0304-3940(02)00168-4.

76. Iyer, A.M., Zurolo, E., Boer, K., Baayen, J.C., Giangaspero, F., Arcella, A., Di Gennaro, G.C., Esposito, V., Spliet, W.G., van Rijen, P.C., Troost, D., Gorter, J.A., and Aronica, E. (2010) Tissue plasminogen activator and urokinase plasminogen activator in human epileptogenic pathologies, Neuroscience, 167, 929–945, doi: 10.1016/j.neuroscience.2010.02.047.

77. Liu, B., Zhang, B., Wang, T., Liang, Q.C., Jing, X.R., Zheng, J., Wang, C., Meng, Q., Wang, L., Wang, W., Guo, H., You, Y., Zhang, H., and Gao, G.D. (2010) Increased expression of urokinase-type plasminogen activator receptor in the frontal cortex of patients with intractable frontal lobe epilepsy, J. Neurosci. Res., 88, 2747–2754, doi: 10.1002/jnr.22419.

78. Quirico-Santos, T., Nascimento Mello, A., Casimiro Gomes, A., de Carvalho, L.P., de Souza, J.M., and Alves-Leon, S. (2013) Increased metalloprotease activity in the epileptogenic lesion – lobectomy reduces metalloprotease activity and urokinase-type uPAR circulating levels, Brain Res., 1538, 172–181, doi: 10.1016/j.brainres.2013.09.044.

79. Lahtinen, L., Lukasiuk, K., and Pitkanen, A. (2006) Increased expression and activity of urokinase-type plasminogen activator during epileptogenesis, Eur. J. Neurosci., 24, 1935–1945, doi: 10.1111/j.1460-9568.2006.05062.x.

80. Gorter, J.A., van Vliet, E.A., Aronica, E., Breit, T., Rauwerda, H., Lopes da Silva, F.H., and Wadman, W.J. (2006) Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy, J. Neurosci., 26, 11083–11110, doi: 10.1523/JNEUROSCI.2766-06.2006.

81. Gorter, J.A., Van Vliet, E.A., Rauwerda, H., Breit, T., Stad, R., van Schaik, L., Vreugdenhil, E., Redeker, S., Hendriksen, E., Aronica, E., da Silva, F.H.L., and Wadman, W.J. (2007) Dynamic changes of proteases and protease inhibitors revealed by microarray analysis in CA3 and entorhinal cortex during epileptogenesis in the rat, Epilepsia, 48, 53–64, doi: 10.1111/j.1528-1167.2007.01290.x.

82. Carroll, P.M., Tsirka, S.E., Richards, W.G., Frohman, M.A., and Strickland, S. (1994) The mouse tissue plasminogen activator gene 5’ flanking region directs appropriate expression in development and a seizure-enhanced response in the CNS, Development, 120, 3173–3183.

83. Salles, F.J., and Strickland, S. (2002) Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus, J. Neurosci., 22, 2125–2134, doi: 10.1523/JNEUROSCI.22-06-02125.2002.

84. Haile, W.B., Wu, J., Echeverry, R., Wu, F., An, J., and Yepes, M. (2012) Tissue-type plasminogen activator has a neuroprotective effect in the ischemic brain mediated by neuronal TNF-α, J. Cereb. Blood Flow Metab., 32, 57–69, doi: 10.1038/jcbfm.2011.106.

85. Grummisch, J.A., Jadavji, N.M., and Smith, P.D. (2016) tPA promotes cortical neuron survival via mTOR-dependent mechanisms, Mol. Cell. Neurosci., 74, 25–33, doi: 10.1016/j.mcn.2016.03.005.

86. Lukasiuk, K., Kontula, L., and Pitkanen, A. (2003) cDNA profiling of epileptogenesis in the rat brain, Eur. J. Neurosci., 17, 271–279, doi: 10.1046/j.1460-9568.2003.02461.x.

87. Masos, T., and Miskin, R. (1997) mRNAs encoding urokinase-type plasminogen activator and plasminogen activator inhibitor-1 are elevated in the mouse brain following kainate-mediated excitation, Brain Res. Mol. Brain Res., 47, 157–169, doi: 10.1016/S0169-328X(97)00040-5.

88. Siconolfi, L.B., and Seeds, N.W. (2001) Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush, J. Neurosci., 21, 4336–4347, doi: 10.1523/JNEUROSCI.21-12-04336.2001.

89. Diaz, A., Merino, P., Manrique, L.G., Ospina, J.P., Cheng, L., Wu, F., Jeanneret, V., and Yepes, M. (2017) A cross talk between neuronal urokinase-type plasminogen activator (uPA) and astrocytic uPA receptor (uPAR) promotes astrocytic activation and synaptic recovery in the ischemic brain, J. Neurosci., 37, 10310–10322,doi: 10.1523/JNEUROSCI.1630-17.2017.

90. Thornton, P., Pinteaux, E., Allan, S.M., and Rothwell, N.J. (2008) Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity, Mol. Cell. Neurosci., 37, 135–142, doi: 10.1016/j.mcn.2007.09.002.

91. Eisener-Dorman, A.F., Lawrence, D.A., and Bolivar, V.J. (2009) Cautionary insights on knockout mouse studies: the gene or not the gene? Brain. Behav. Immun., 23, 318–324, doi: 10.1016/j.bbi.2008.09.001.

92. Soeda, S., Koyanagi, S., Kuramoto, Y., Kimura, M., Oda, M., Kozako, T., Hayashida, S., and Shimeno, H. (2008) Anti-apoptotic roles of plasminogen activator inhibitor-1 as a neurotrophic factor in the central nervous system, Thromb. Haemost., 100, 1014–1020, doi: 10.1160/TH08-04-0259.

93. Rysenkova, K.D., Semina, E.V, Karagyaur, M.N., Shmakova, A.A., Dyikanov, D.T., Vasiluev, P.A., Rubtsov, Y.P., Rubina, K.A., and Tkachuk, V.A. (2018) CRISPR/Cas9 nickase mediated targeting of urokinase receptor gene inhibits neuroblastoma cell proliferation, Oncotarget, 9, 29414–29430, doi: 10.18632/oncotarget.25647.

94. Shu, Y.H., Lu, X.M., Wei, J.X., Xiao, L., and Wang, Y.T. (2015) Update on the role of p75NTR in neurological disorders: a novel therapeutic target, Biomed. Pharmacother., 76, 17–23, doi: 10.1016/j.biopha.2015.10.010.

95. Blochl, A., and Blochl, R. (2007) A cell-biological model of p75NTR signaling, J. Neurochem., 102, 289–305, doi: 10.1111/j.1471-4159.2007.04496.x.

96. Friedman, W.J. (2010) Proneurotrophins, seizures, and neuronal apoptosis, Neurosci., 16, 244–252, doi: 10.1177/1073858409349903.

97. Soren Leonard, A., Puranam, R.S., Helgager, J., Liu, G., and McNamara, J.O. (2012) Conditional deletion of TrkC does not modify limbic epileptogenesis, Epilepsy Res., 102, 126–130, doi: 10.1016/j.eplepsyres.2012.07.019.

98. Volosin, M., Trotter, C., Cragnolini, A., Kenchappa, R.S., Light, M., Hempstead, B.L., Carter, B.D., and Friedman, W.J. (2008) Induction of proneurotrophins and activation of p75NTR-mediated apoptosis via neurotrophin receptor-interacting factor in hippocampal neurons after seizures, J. Neurosci., 28, 9870–9879, doi: 10.1523/JNEUROSCI.2841-08.2008.

99. Unsain, N., Nunez, N., Anastasia, A., and Masco, D.H. (2008) Status epilepticus induces a TrkB to p75 neurotrophin receptor switch and increases brain-derived neurotrophic factor interaction with p75 neurotrophin receptor: an initial event in neuronal injury induction, Neuroscience, 154, 978–993, doi: 10.1016/j.neuroscience.2008.04.038.

100. Riffault, B., Kourdougli, N., Dumon, C., Ferrand, N., Buhler, E., Schaller, F., Chambon, C., Rivera, C., Gaiarsa, J.L., and Porcher, C. (2018) Pro-brain-derived neurotrophic factor (proBDNF)-mediated p75NTR activation promotes depolarizing actions of GABA and increases susceptibility to epileptic seizures, Cereb. Cortex, 28, 510–527, doi: 10.1093/cercor/bhw385.

101. Porcher, C., Medina, I., and Gaiarsa, J.L. (2018) Mechanism of BDNF modulation in GABAergic synaptic transmission in healthy and disease brains, Front. Cell. Neurosci., 12, 273, doi: 10.3389/fncel.2018.00273.

102. Holm, M.M., Nieto-Gonzalez, J.L., Vardya, I., Vaegter, C.B., Nykjaer, A., and Jensen, K. (2009) Mature BDNF, but not proBDNF, reduces excitability of fast-spiking interneurons in mouse dentate gyrus, J. Neurosci., 29, 12412–12418, doi: 10.1523/JNEUROSCI.2978-09.2009.

103. Salazar, I.L., Caldeira, M.V., Curcio, M., and Duarte, C.B. (2016) The role of proteases in hippocampal synaptic plasticity: putting together small pieces of a complex puzzle, Neurochem. Res., 41, 156–182, doi: 10.1007/s11064-015-1752-5.

104. Nagappan, G., Zaitsev, E., Senatorov, V.V., Yang, J., Hempstead, B.L., and Lu, B. (2009) Control of extracellular cleavage of ProBDNF by high frequency neuronal activity, Proc. Natl. Acad. Sci., 106, 1267–1272, doi: 10.1073/pnas.0807322106.

105. Thomas, A.X., Cruz Del Angel, Y., Gonzalez, M.I., Carrel, A.J., Carlsen, J., Lam, P.M., Hempstead, B.L., Russek, S.J., and Brooks-Kayal, A.R. (2016) Rapid increases in proBDNF after pilocarpine-induced status epilepticus in mice are associated with reduced proBDNF cleavage machinery, eNeuro, 3, ENEURO.0020-15.2016, doi: 10.1523/ENEURO.0020-15.2016.

106. Su, F., Kozak, K.R., Herschman, H., Reddy, S.T., and Farias-Eisner, R. (2007) Characterization of the rat urokinase plasminogen activator receptor promoter in PC12 cells, J. Neurosci. Res., 85, 1952–1958, doi: 10.1002/jnr.21296.

107. Rohe, M., Synowitz, M., Glass, R., Paul, S.M., Nykjaer, A., and Willnow, T.E. (2009) Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression, J. Neurosci., 29, 15472–15478, doi: 10.1523/JNEUROSCI.3960-09.2009.

108. Gliemann, J., Hermey, G., Nykjaer, A., Petersen, C.M., Jacobsen, C., and Andreasen, P.A. (2004) The mosaic receptor sorLA/LR11 binds components of the plasminogen-activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related protein), but mediates slow internalization of bound ligand, Biochem. J., 381, 203–212, doi: 10.1042/BJ20040149.