БИОХИМИЯ, 2019, том 84, вып. 8, с. 1099–1114

УДК 575.852

Роль обратной транскриптазы в возникновении жизни

Обзор

© 2019 Р.Н. Мустафин 1, Э.К. Хуснутдинова 2

Башкирский государственный медицинский университет, 450008 Уфа, Россия; электронная почта: ruji79@mail.ru

Институт биохимии и генетики Уфимского федерального исследовательского центра РАН, 450054 Уфа, Россия

Поступила в редакцию 08.03.2019
После доработки 14.05.2019
Принята к публикации 14.05.2019

DOI: 10.1134/S0320972519080037

КЛЮЧЕВЫЕ СЛОВА: обратная транскриптаза, полимераза, процессинг, рибозимы, ретроэлементы, транспозоны, эволюция.

Аннотация

Предполагается, что рибозим РНК-полимераза, обладающая активностью обратной транскриптазы и интегразы, сыграла ключевую роль в закономерностях возникновения жизни на Земле. Представлена гипотеза, согласно которой, благодаря обратной транскриптазе в эволюции были сформированы универсальные предковые единицы всего живого — ретроэлементы (РЭ). Их склонность к мутациям и способность к взаимоинтеграции стала основой для образования комплексных структур ДНК, первичных геномов, от которых произошли все археи, эукариоты, бактерии и вирусы. Консервативные свойства ретроэлементов сохранились на протяжении всей эволюции — при модификациях их использования возникли новые способы взаимодействий белков и нуклеиновых кислот. Жизнь эволюционировала благодаря инсерционному мутагенезу и противоборству автономно реплицирующихся полинуклеотидов для сохранения структур с адаптивными свойствами. Сделано предположение, что при отборе механизмов защиты от инсерций на основе рибонуклеазной способности рибозима обратной транскриптазы возникли все универсальные ферментативные системы процессинга молекул РНК. Они стали ключевыми источниками дальнейших эволюционных преобразований геномов и их регуляторных особенностей. Приведены данные, позволяющие предположить, что система трансляции, объединившая мир РНК и ДНК с белками, возникла как модификация механизмов защиты от инсерций. Образуемые с ее помощью полипептиды стали потенцировать работу рибозимов в составе рибонуклеопротеинов (РНП) и даже функционально замещать их при большей успешности катализа биологических реакций. Проведен анализ механизмов использования ретроэлементов в структурных и регуляторных преобразованиях геномов эукариот, которые могут отражать адаптивные принципы, сформированные при зарождении жизни. Параллельно с эволюцией существующих белков, из РЭ возникают и изменяются рибозимы, такие как длинные некодирующие РНК. Они могут функционировать в комплексе с белками в составе РНП, способны к самостоятельной каталитической активности и трансляции. Их гены обладают потенциалом к преобразованию в белок-кодирующие. Т.е. консервативные принципы взаиморегуляции РНК, ДНК и белков, сформированные при возникновении жизни, используются на протяжении всей эволюции.

Сноски

* Адресат для корреспонденции.

Конфликт интересов

Авторы заявляют, что у них нет конфликтов интересов.

Соблюдение этических норм

Настоящая статья не содержит каких-либо исследований с участием людей или использованием животных в качестве объектов исследований.

Список литературы

1. Lincoln, T.A., and Joyce, G.F. (2009) Self-sustained replication of an RNA enzyme, Science, 323, 1229–1232, doi: 10.1126/science.1167856.

2. Wochner, A., Attwater, J., Coulson, A., and Holliger, P. (2011) Ribozyme-catalyzed transcription of an active ribozyme, Science, 332, 209–212, doi: 10.1126/science.1200752.

3. Horning, D.P., and Joyce, G.F. (2016) Amplification of RNA by an RNA polymerase ribozyme, Proc. Natl Acad. Sci. USA, 113, 9786–9791, doi: 10.1073/pnas.1610103113.

4. Kreysing, M., Keil, L., Lanzmich, S., and Braun, D. (2015) Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length, Nat. Chem., 7, 203–208, doi: 10.1038/nchem.2155.

5. Betts, H.C., Puttick, M.N., Clark, J.W., Williams T.A., Donoghue P.C.J., and Pisani, D. (2018) Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin, Nat. Ecol. Evol., 2, 1556–1562, doi: 10.1038/s41559-018-0644-x.

6. Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., and Cech, T.R. (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena, Cell, 31, 147–157.

7. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme, Cell, 35, 849–857.

8. Prody, G.A., Bakos, J.T., Buzayan, J.M., Schneider, I.R., and Bruening, G. (1986) Autolytic processing of dimeric plant virus satellite RNA, Science, 231, 1577–1580.

9. de la Pena, M., Garcia-Robles, I., and Cervera, A. (2017) The Hammerhead Ribozyme: a long history for a short RNA, Molecules, 22, pii: E78, doi: 10.3390/molecules22010078.

10. Levine, M.T., Jones, C.D., Kern, A.D., Lindfors, H.A., and Begun, D.J. (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression, Proc. Natl. Acad. Sci. USA, 103, 9935–9939.

11. Cai, J., Zhao, R., Jiang, H. and Wang, W. (2008) De novo origination of a new protein-coding gene in Saccharomyces cerevisiae, Genetics, 179, 487–496, doi: 10.1534/genetics.107.084491.

12. Xie, C., Zhang, Y.E., Chen, J.Y., Liu, C.J., Zhou, W.Z., Li, Y., Zhang, M., Zhang, R., Wei, L., and Li, C.Y. (2012) Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs, PLoS Genet., 8, e1002942, doi: 10.1371/journal.pgen.1002942.

13. Ruiz-Orera, J., Messeguer, X., Subirana, J.A., and Alba, M.M. (2014) Long non-coding RNAs as a source of new peptide, Elife, 3, e03523, doi: 10.7554/eLife.03523.

14. Johnson, R., and Guigo, R. (2014) The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 20, 959–976, doi: 10.1261/rna.044560.114.

15. Kapusta, A., and Feschotte, C. (2014) Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications, Trends Genet., 30, 439–452, doi: 10.1016/j.tig.2014.08.004.

16. Lukash, L.L. (2007) Mutagenesis induced by integration processes and evolution of nuclear genome, Biopolym. Cell, 23, 172–187.

17. Samanta, B., and Joyce G.F. (2017) A reverse transcriptase ribozyme, Elife, 6, e31153, doi: 10.7554/eLife.31153.

18. Qu, G., Kaushal, P.S., Wang, J., Shigematsu, H., Piazza, C.L., Agrawal, R.K., Belfort, M., and Wang H.W. (2016) Structure of a group II intron in complex with its reverse transcriptase, Nat. Struct. Mol. Biol., 23, 549–557, doi: 10.1038/nsmb.3220.

19. Hughes, S.H. (2015) Reverse transcription of retroviruses and LTR retrotransposons, Microbiol. Spectr., 3, MDNA3-0027-2014, doi: 10.1128/microbiolspec.MDNA3-0027-2014.

20. Moelling, K., and Broecker, F. (2015) The reverse transcriptase-RNase H: from viruses to antiviral defense, Ann. N. Y. Acad. Sci., 1341, 126–135, doi: 10.1111/nyas.12668.

21. Gogolevsky, K.P., Vassetzky, N.S., and Kramerov, D.A. (2009) 5S rRNA-derived and tRNA-derived SINEs in fruit bats, Genomics, 93, 494–500, doi: 10.1016/j.ygeno.2009.02.001.

22. Rosenbland, M.A., Larsen, N., Samuelsson, T., and Zwieb, C. (2009) Kinship in the SRP RNA family, RNA Biol., 6, 508–516.

23. Li, Z., Ender, C., Meister, G., Moore, P.S., Chang, Y., and John, B. (2012) Extensive terminal and asymmertric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs, Nucleic Acids Res., 40, 6787–6799, doi: 10.1093/nar/gks307.

24. Kojima, K.K. (2015) A new class of SINEs with snRNA gene-derived heads, Genome Biol. Evol., 7, 1702–1712, doi: 10.1093/gbe/evv100.

25. Martinez, G., Choudury, S.G., and Slotkin, R.K. (2017) tRNA-derived small RNAs target transposable element transcripts, Nucleic Acids Res., 45, 5142–5152, doi: 10.1093/nar/gkx103.

26. Startek, M.P., Nogly, J., Gromadka, A., Grzebelus, D., and Gambin, A. (2017) Inferring transposons activity chronology by TRANAcendence-TEs database and de-novo mining tool, BMC Bioinformatics, 18, 422, doi: 10.1186/s12859-017-1824-4.

27. Alzohairy, A.M., Gyulai, G., Jansen, R.K., and Bahieldin, A. (2013) Transposable elements domesticated and neofunctionalized by eukaryotic genomes, Plasmid, 69, 1–15, doi: 10.1016/j.plasmid.2012.08.001.

28. Kramerov, D.A., and Vassetzky, N.S. (2011) Origin and evolution of SINEs in eukaryotic genomes, Heredity (Edinb.), 107, 487–495, doi: 10.1038/hdy.2011.43.

29. Kapitonov, V.V., and Jurka, J. (2003) A novel class of SINE elements derived from 5S rRNA, Mol. Biol. Evol., 20, 694–702.

30. Wang, J., Wang, A., Han, Z., Zhang, Z., Li, F., and Li, X. (2012) Characterization of three novel SINE families with unusual features in Helicoverpa armigera, PLoS One, 7, e31355, doi: 10.1371/journal.pone.0031355.

31. Longo, M.S., Brown, J.D., Zhang, C., O’Neill, M.J. and O’Neill, R.J. (2015) Identification of a recently active mammalian SINE derived from ribosomal RNA, Genome Biol. Evol., 7, 775–788, doi: 10.1093/gbe/evv015.

32. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P., and Schulman, A.H. (2007) A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 8, 973–982.

33. Abrusan, G., Zhang, Y., and Szilagyi, A. (2013) Structure prediction and analysis of DNA transposon and LINE retrotransposons proteins, J. Biol. Chem., 288, 16127–16138, doi: 10.1074/jbc.M113.451500.

34. Rice, P.A., and Baker, T.A. (2001) Comparative architecture of transposase and integrase complexes, Nat. Struct. Biol., 8, 302–307.

35. Wolkowicz, U.M., Morris, E.R., Robson, M., Trubitsyna, M., and Richardson, J.M. (2014) Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir, ACS Chem. Biol., 9, 743–751, doi: 10.1021/cb400791u.

36. Nowotny, M., Gaidamakov, S.A., Crouch, R.J., and Yang, W. (2005) Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis, Cell, 121, 1005–1016.

37. De Koning, A.P., Gu, W., Castoe, T.A., Batzer, M.A., and Polock, D.D. (2011) Repetitive elements may comprise over two-thirds of the human genome, PloS Genet., 7, e1002384, doi: 10.1371/journal.pgen.1002384.

38. Goerner-Potvin, P., and Bourque, G. (2018) Computational tools to unmask transposable elements, Nat. Rev. Genet., 19, 688–704, doi: 10.1038/s41576-018-0050-x.

39. Ellefson, J.W., Gollihar, J., Shoroff, R., Shivram, H., Lyer, V.R., and Ellington, A.D. (2016) Synthetic evolutionary origin of a proofreading reverse transcriptase, Science, 352, 1590–1593, doi: 10.1126/science.aaf5409.

40. Freeland S.J., Knight R.D., Landweber L.F. (1999) Do proteins predate DNA, Science, 286, 690–692.

41. Baltimore, D. (1970) RNA-dependent DNA polymerase in virions of RNA tumour, Nature, 226, 1209–1211.

42. Temin, H.M., and Mizutani, S. (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma, Nature, 226, 1211–1213.

43. Lampson, B.C., Inouye, M. and Inouye, S. (1989) Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus, Cell, 56, 701–707.

44. Lim, D., and Maas, W.K. (1989) Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B, Cell, 56, 891–904.

45. Toro, N., Martinez-Abarca, F., and Gonzalez-Delgado, A. (2017) The reverse transcriptases associated with CRISPR-Cas systems, Sci. Rep., 7, 7089, doi: 10.1038/s41598-017-07828-y.

46. Ekland, E.H., and Bartel, D.P. (1996) RNA-catalysed RNA polymerization using nucleoside triphosphates, Nature, 382, 373–376.

47. Been, M.D., and Cech, T.R. (1988) RNA as an RNA polymerase: net elongation of an RNA primer catalyzed by the Tetrahymena ribozyme, Science, 239, 1412–1416.

48. Adamala, K., Engelhart, A.E. and Szostak, J.W. (2015) Generation of functional RNAs from inactive oligonucleotide complexes by non-enzymatic primer extension, J. Am. Chem. Soc., 137, 483–489.

49. Braun, V., Mehlig, M., Moos, M., Rupnik, M., Kalt, B., Mahony, D.E., and von Eichel-Streiber, C. (2000) A chimeric ribozyme in clostridium difficile combines features of group I introns and insertion elements, Mol. Microbiol., 36, 1447–1459.

50. Gao, X., and Voytas, D.F. (2005) A eukaryotic gene family related to retroelements integrases, Trends Genet., 21, 133–137.

51. Skala, A.M. (2014) Retroviral DNA transposition: themes and variations, Microbiol. Sperctr., 2, doi: 10.1128/microbiolspec.MDNA3-0005-2014.

52. Zeng, L., Pederson, S.M., Cao, D., Qu, Z., Hu, Z., Adelson, D.L., and Wei, C. (2018) Genome-wide analysis of the association of transposable elements with gene regulation suggests that alu elements have the largest overall regulatory impact, J. Comput. Biol., 25, 551–562, doi: 10.1089/cmb.2017.0228.

53. Ren, Y.F., Li, G., Wu, J., Xue, Y.F., Song, Y.J., Lv, L., Zhang, X.J., and Tang, K.F. (2012) Dicer-dependent biogenesis of small RNAs derived from 7SL RNA, PLoS One, 7, e40705, doi: 10.1371/journal.pone.0040705.

54. Jacob, M.D., Audas, T.E., Mullineux, S.T., and Lee, S. (2012) Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal Intergenic spacer, Nucleus, 3, 315–319.

55. Kumar, P., Anaya, J., Mudunuri, S.B., and Dutta, A. (2014) Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets, BMC Biol., 12, 78, doi: 10.1186/s12915-014-0078-0.

56. Ender, C., Krek, A., Friedlander, M.R., Beitzinger, M., Weinmann, L., Chen, W., Pferffer, S., Rajewsky, N., and Meister, G. (2008) A human snoRNA with microRNA-like functions, Mol. Cell., 32, 519–528, doi: 10.1016/j.molcel.2008.10.017.

57. Taft, R.J., Glazov, E.A., Lassmann, T., Hayashizaki, Y., Carninci, P., and Mattick, J.S. (2009) Small RNAs derived from snoRNAs, RNA, 15, 1233–1240, doi: 10.1261/rna.1528909.

58. Venkatesh, T., Suresh, P.S., and Tsutsumi, R. (2016) tRFs: miRNAs in disguise, Gene, 579, 133–138, doi: 10.1016/j.gene.2015.12.058.

59. Zhou, J., Ding, D., Wang, M., and Cong, Y.S. (2014) Telomerase reverse transcriptase in the regulation of gene expression, BMB Rep., 47, 8–14.

60. Elliott, T.A., Stage, D.E., Crease, T.J., and Eickbush, T.H. (2013) In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome, Mob. DNA, 4, 20, doi: 10.1186/1759-9753-4-20.

61. Jamburuthugoda, V.K., and Eickbush, T.H. (2014) Identification of RNA binding motifs in the R2 retrotransposon-encoded reverse transcriptase, Nucleic Acids Res., 42, 8405–8415, doi: 10.1093/nar/gku514.

62. Novikova, O., and Belfort, M. (2017) Mobile group II introns as ancestral eukaryotic elements, Trends Genet., 33, 773–783, doi: 10.1016/j.tig.2017.07.009.

63. Wang, D., Su, Y., Wang, X., Lei, H., and Yu, J. (2012) Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in mammalian intron size expansion, Evol. Bioinform. Online, 8, 301–319, doi: 10.4137/EBO.S9758.

64. Yenerall, P., and Zhou, L. (2012) Identifying the mechanisms of intron gain: progress and trends, Biol. Direct., 7, 29, doi: 10.1186/1745-6150-7-29.

65. Feschotte, C. (2008) The contribution of transposable elements to the evolution of regulatory networks, Nat. Rev. Genet., 9, 397–405.

66. Tajnik, M., Vigilante, A., Braun, S., Hanel, H., Luscombe, N.M., Ule, J., Zarnack, K., and Koning, J. (2015) Inergenic Alu exonisation facilitates the evolution of tissue-specific transcript ends, Nucleic Acids Res., 43, 10492–10505, doi: 10.1093/nar/gkv956.

67. Lei, H., and Vorechovsky, I. (2005) Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression, Mol. Cell. Biol., 25, 6912–6920.

68. Pastor, T., Talotti, G., Lewandowska, M.A., and Pagani, F. (2009) An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM, Nucleic Acids Res., 37, 7258–67, doi: 10.1093/nar/gkp778.

69. Galej, W.P., Oubridge, C., Newman, A.J., and Nagai, K. (2013) Crystal structure of Prp8 reveals active site cavity of the spliceosome, Nature, 493, 638–643, doi: 10.1038/nature11843.

70. Rearick, D., Prakash, A., McSweeny, A., Shepard S.S., Fedorova, L., and Fedorov, A. (2011) Critical association of ncRNA with introns, Nucleic Acids Res., 39, 2357–2366, doi: 10.1093/nar/gkq1080.

71. Nissen, P., Hansen, J., Ban, N., Moore P.B., and Steitz, T.A. (2000) The structural basis of ribosome activity in peptide bond synthesis, Science, 289, 920–930.

72. Zimmerly, S., and Wu, L. (2015) An unexplored diversity of reverse transcriptases in bacteria, Microbiol. Spectr., 3, MDNA3-0058-2014, doi: 10.1128/microbiolspec.MDNA3-0058-2014.

73. Равин Н.В., Шестаков С.В. (2013) Геном прокариот, Вавиловский журнал генетики и селекции, 17, 972–984.

74. Liu, M., Deora, R., Doulatov, S.R. Gingery, M., Eiserling, F.A., Preston, A., Maskell, D.J., Simons, R.W., Cotter, P.A., Parkhill, J., and Miller, J.F. (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage, Science, 295, 2091–2094.

75. Toro, N., Martinez-Abarca, F., Gonzalez-Delgado, A., and Mestre, M.R. (2018) On the origin and evolutionary relationships of the reverse transcriptases associated with type III CRISPR–Cas Systems, Front. Mircrobiol., 9, 1317, doi: 10.3389/fmicb.2018.01317.

76. Lambowitz, A.M., and Zimmerly, S. (2011) Group II introns: mobile ribozymes that invade DNA, Cold Spring Harb. Perspect. Biol., 3, a003616, doi: 10.1101/cshperspect.a003616.

77. Peebles, C.L., Perlman, P.C., Mecklenburg, K.L., Petrillo, M.L., Tabor, J.H., Jarrell, K.A., and Cheng, H.L. (1986) A self-splicing RNA excises an intron lariat, Cell, 44, 213-223.

78. Silas, S., Mohr, G., Sidote, D.J., Markham, L.M., Sanchez-Amat, A., Bhaya, D., Lambowitz, A.M., and Fire, A.Z. (2016) Direct CRISPR spacer acquisition from RNA by natural reverse transcriptase-Cas1 fusion protein, Science, 351, aad4234, doi: 10.1126/science.aad4234.

79. Elliott, T.A., and Greqory, T.R. (2015) Do larger genomes contain more diverse transposable elements, BMC Evol. Biol., 15, 69–81, doi: 10.1186/s12862-015-0339-8.

80. Kubiak, M.R., and Makalowska, I. (2017) Protein-coding genes’ retrocopies and their functions, Viruses, 9, pii: E80, doi: 10.3390/v9040080.

81. Zdobnov, E.M., Campillos, M., Harrington, E.D., Torrents, D., and Bork, P. (2005) Protein coding potential of retroviruses and other transposable elements in vertebrate genomes, Nucleic Acids Res., 33, 946–954.

82. Campillos, M., Doerks, T., Shah, P.K., and Bork, P. (2006) Computational characterization of multiple Gag-like human protein, Trends Genet., 22, 585–589.

83. Sela, N., Kim, E., and Ast, G. (2010) The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates, Genome Biol., 11, R59, doi: 10.1186/gb-2010-11-6-r59.

84. Schmitz, J., and Brosius, J. (2011) Exonization of transposed elements: a challenge and opportunity for evolution, Biochimie, 93, 1928–1934, doi: 10.1016/j.biochi.2011.07.014.

85. Cheng, Z.J., and Murata, M. (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives, Genetics, 164, 665–672.

86. Kipling, D., and Warburton, P.E. (1997) Centromeres, CENP-B and Tigger too, Trends Genet., 13, 141–145.

87. Mestrovic, N., Mravinac, B., Pavlek, M., Vojvoda-Zeljko, T., Satovic, E., and Plohl, M. (2015) Structural and functional liaisons between transposable elements and satellite DNAs, Chromosome Res., 23, 583–596, doi: 10.1007/s10577-015-9483-7.

88. Arkhipova, I.R. (2018) Neutral theory, transposable elements, and eukaryotic genome evolution, Mol. Biol. Evol., 35, 1332–1337, doi: 10.1093/molbev/msy083.

89. Garavis, M., Gonzalez, C., and Villasante, A. (2013) On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution, Genome Biol. Evol., 5, 1142–1150, doi: 10.1093/gbe/evt079.

90. De Souza, F.S., Franchini, L.F., and Rubinstein, M. (2013) Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong, Mol. Biol. Evol., 30, 1239 –1251, doi: 10.1093/molbev/mst045.

91. Gim, J., Ha, H., Ahn, K., Kim, D.S., and Kim, H.S. (2014) Genome-Wide Identification and Classification of microRNAs derived from repetitive elements, Genomic Inform., 12, 261–267, doi: 10.5808/GI.2014.12.4.261.

92. Long, Y., Wang, X., Youmans, D.T., and Cech, T.R. (2017) How do lncRNAs regulate transcription, Sci. Adv., 3, eaao2110, doi: 10.1126/sciadv.aao2110.

93. Lu, X., Sachs, F., Ramsay, L., Jacques, P.E., Goke, J., Bourque, G., and Ng, H.H. (2014) The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 21, 423–425, doi: 10.1038/nsmb.2799.

94. Honson, D.D., and Macfarlan, T.S. (2018) A lncRNA-like role for LINE1s in development, Dev. Cell, 46, 132–134, doi: 10.1016/j.devcel.2018.06.022.

95. Anderson, D.M., Anderson, K.M., Cang, C.L., Makarewich, C.A., Nelson, B.R., McAnally, J.R., Kasaragod, P., Shelton, J.M., Liou, J., Bassel-Duby, R., and Olson, E.N. (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 160, 595–606, doi: 10.1016/j.cell.2015.01.009.

96. Chuong, E.B., Elde, N.C., and Feschotte, C. (2017) Regulatory activities of transposable elements: from conflicts to benefits, Nat. Rev. Genet., 18, 71–86, doi: 10.1038/nrg.2016.139.

97. Fontdevila, A. (2005) Hybrid genome evolution by transposition, Cytogenet. Genome Res., 110, 49–55.

98. Soemedi, R., Cygan, K.J., Rhine, C.L., Glidden, D.T., Taggart, A.J., Lin, C.L., Fredericks, A.M., and Fairbrother, W.G. (2017) The effects of structure on pre-mRNA processing and stability, Methods, 125, 36–44, doi: 10.1016/j.ymeth.2017.06.001.

99. Kralovicova, J., Patel, A., Searle, M. and Vorechovsky, I. (2015) The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat, RNA Biol., 12, 54–69, doi: 10.1080/15476286.2015.1017207.

100. Хавинсон В.Х., Соловьев А.Ю., Шатаева Л.К. (2006) Молекулярный механизм взаимодействия олигопептидов и двойной спирали ДНК, Бюл. экспер. биол., 141, 443–447.

101. Gladyshev, E.A., and Arkhipova, I.R. (2011) A widespread class of reverse transcriptase-related cellular genes, Proc. Natl. Acad. Sci. USA, 108, 20311–20316, doi: 10.1073/pnas.1100266108.

102. Kim, S., and Choi, D. (2018) New role of LTR-retrotransposons for emergence and expansion of disease-resistance genes and high-copy gene families in plants, BMB Rep., 51, 55–56.

103. Zhang, H., Tao, Z., Hong, H., Chen, Z., Wu, C., Li, X., Xiao, J., and Wang, S. (2016) Transposon-derived small RNA is responsible for modified function of WRKY45 locus, Nat. Plants, 2, 16016–16023, doi: 10.1038/nplants.2016.16.

104. Trizzino, M., Kapusta, A., and Brown, C.D. (2018) Transposable elements generate regulatory novelty in a tissue-specific fashion, BMC Genomics, 19, 468, doi: 10.1186/s12864-018-4850-3.

105. Виноградов А.Е. (2011) Функциональное значение базовых свойств структуры генома эукариот. Дис. докт. биол. наук, Санкт-Петербург.

106. Joly-Lopez, Z., and Bureau, T.E. (2018) Exaptation of transposable element coding sequences, Curr. Opin. Genet. Dev., 49, 34–42, doi: 10.1016/j.gde.2018.02.011.

107. Duan, C.G., Wang, X., Pan, L., Miki, D., Tang, K., Hsu, C.C., Lei, M., Zhong, Y., Hou, Y.J., Wang, Z., Zhang, Z., Mangrauthia, S.K., Xu, H., Zhang, H., Dilkes, B., Tao, W.A., and Zhu, J.K. (2017) A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation, Cell Res., 27, 226–240, doi: 10.1038/cr.2016.147.

108. Sinzelle, L., Izsvak, Z., and Ivics, Z. (2009) Molecular domestication of transposable elements: From detrimental parasites to useful host genes, Cell. Mol. Life Sci., 66, 1073–1093, doi: 10.1007/s00018-009-8376-3.

109. Wang, J., Vicente-Garcia, C., Seruggia, D., Molto, E., Fernandez-Minan, A., Neto, A., Lee, E., Gomez-Skarmeta, J.L., Montoliu, L., Lunyak, V.V., and Jordan, I.K. (2015) MIR retrotransposons sequences provide insulators to the human genome, Proc. Natl. Acad. Sci. USA, 112, 4428–4437, doi: 10.1073/pnas.1507253112.