БИОХИМИЯ, 2019, том 84, вып. 8, с. 1076–1098

УДК 577.112.7

РНК-(цитозин С5)-метилтрансферазы

Обзор

© 2019 С.А. Кузнецова 1 * #, К.С. Петрюков 2 * #, Ф.И. Плетнев 2,3,4, П.В. Сергиев 1,2,3,5, О.А. Донцова 2,3,4

Институт функциональной геномики, Московский государственный университет им. М.В. Ломоносова, 119991 Москва, Россия; электронная почта: svetlana@belozersky.msu.ru

Московский государственный университет им. М.В. Ломоносова, химический факультет, 119991 Москва, Россия; электронная почта: kirill-petriukov@mail.ru

Сколковский институт науки и технологий, 121205 Московская область, Сколково

Институт биоорганической химии, 117997 Москва, Россия

НМИЦ онкологии им. И.И. Петрова, 197758 Санкт-Петербург, Россия

Поступила в редакцию 05.03.2019
После доработки 16.04.2019
Принята к публикации 16.04.2019

DOI: 10.1134/S0320972519080025

КЛЮЧЕВЫЕ СЛОВА: посттранскрипционная модификация РНК, РНК-(цитозин С5)-метилтрансферазы, 5-метилцитозин, метилирование РНК.

Аннотация

Обобщены сведения о результатах и достижениях в области исследований про- и эукариотических РНК-(цитозин С5)-метилтрансфераз. Описываются их структуры, внутриклеточная локализация, РНК-мишени и механизмы каталитического действия, а также функциональная роль метилированных остатков цитозина в РНК и функции РНК-(цитозин С5)-метилтрансфераз в клетке, не связанные с метилированием. Особое внимание уделено анализу сходства и различий в структуре и механизме действия РНК- и ДНК-метилтрансфераз. Приводятся данные о связи мутаций в генах РНК-(цитозин С5)-метилтрансфераз с заболеваниями человека.

Сноски

* Авторы внесли равный вклад в работу.

# Адресат для корреспонденции.

Финансирование

Обзор подготовлен при финансовой поддержке Российского научного фонда (проект 17-75-30027) и Российского фонда фундаментальных исследований (проект 17-00-00366).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с использованием людей или животных в качестве объектов.

Список литературы

1. Boccaletto, P., Machnicka, M.A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T.K., de Crécy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., Helm, M., and Bujnicki, J.M. (2018) MODOMICS: a database of RNA modification pathways. 2017 update, Nucleic Acids Res., 46, 303–307, doi: 10.1093/nar/gkx1030.

2. Chen, Y., Sierzputowska-Gracz, H., Guenther, R., Everett, K., and Agris, P. (1993) 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA, Biochemistry, 32, 10249–10253, PMID: 8399153.

3. Gowher, H., and Jeltsch, A. (2018) Mammalian DNA methyltransferases: new discoveries and open questions, Biochem. Soc. Trans., 46, 1191–1202, doi: 10.1042/BST20170574.

4. Trixl, L., and Lusser, A. (2019) The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark, Wiley Interdiscip. Rev. RNA, 10, e1510, doi: 10.1002/wrna.1510.

5. Bohnsack, K.E., Höbartner, K., and Bohnsack, M.T. (2019) Eucaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease, Genes, 10, 102, doi: 10.3390/genes10020102.

6. Schaefer, M., Pollex, T., Hanna, and K., and Lyko, F. (2009) RNA cytosine methylation analysis by bisulfite sequencing, Nucleic Acids Res., 37, e12, doi: 10.1093/nar/gkn954.

7. Edelheit, S., Schwartz, S., Mumbach, M., Wurtzel, O., and Sorek, R. (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m(5)C within archaeal mRNAs, PLoS Genet., 9, e1003602, doi: 10.1371/journal.pgen.1003602.

8. Khoddami, V., and Cairns, B. (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases, Nat Biotechnol., 31, 458–464, doi: 10.1038/nbt.2566.

9. George, H., Ule, J., and Hussain, S. (2017) Illustrating the Epitranscriptome at Nucleotide Resolution Using Methylation-iCLIP (miCLIP), Methods Mol. Biol., 1562, 91–106, doi: 10.1007/978-1-4939-6807-7_7.

10. Squires, J., Patel, H., Nousch, M., Sibbritt, T., Humphreys, D., Parker, B.J., Suter, C.M., and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA, Nucleic Acids Res., 40, 5023–2033, doi: 10.1093/nar/gks144.

11. Hoernes, T., Clementi, N., Faserl, K., Glasner, H., Breuker, K., and Lindner, H. (2016) Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code, Nucleic Acids Res., 44, 852–862, doi: 10.1093/nar/gkv1182.

12. Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M.S., Dai, Q., Di Segni, A., Salmon-Divon, M., Clark, W.C., Guanqun Zheng, G., Pan, T., Solomon, O., Eran Eyal, E., Hershkovitz, V., Han, D., Doré, L.C., Amariglio, N., Rechavi, G., and He, C. (2016) The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA, Nature, 530, 441–446, doi: 10.1038/nature16998.

13. Amort, T., Rieder, D.,Wille, A., Khokhlova-Cubberley, D., Riml, C., Trixl, L., Jia, X.Y., Micura, R., and Lusser, A. (2017) Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain, Genome Biol., 18, 1, doi: 10.1186/s13059-016-1139-1.

14. Amort, T., Souliиre, M., Wille, A., Jia, X., Fiegl, H., Wörle, H., Micura, R., and Lusser, A. (2013) Long non-coding RNAs as targets for cytosine methylation, RNA Biol., 10, 1003–1008, doi: 10.4161/rna.24454.

15. Yang, X., Yang, Y., Sun, B., Chen, Y., Xu, J., Lai, W., Li, A., Wang, X., Bhattarai, D.P., Xiao, W., Sun, H.-Y., Zhu, Q., Hai-Li Ma, H.-L., Adhikari, S., Sun, M., Hao, Y.-J., Bing Zhang, B., Chun-Min Huang, C.-M., Huang, N., Jiang, G.-B., Zhao, Y.-L., Wang, H.-L., Sun, Y.-P., and Yang, Y.-G. (2017) 5-Methylcytosine promotes mRNA export – NSUN2 as the methyltransferase and ALYREF as an m5C reader, Cell Res., 27, 606–625, doi: 10.1038/ cr.2017.55.

16. Reid, R., Greene, P., and Santi, D. (1999) Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences, Nucleic Acids Res., 27, 3138–3145, PMID: 10454610.

17. Walbott, H., Husson, C., Auxilien, S., and Golinelli-Pimpaneau, B. (2007) Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase, RNA, 13, 967–973, doi: 10.1261/rna.515707.

18. Liu, Y., and Santi, D. (2000) m5C RNA and m5C DNA methyltransferases use different cysteine residues as catalysts, Proc. Natl. Acad. Sci. USA, 97, 8263–8265, PMID: 10899996.

19. Zhang, X., and Bruice, T. (2006) The mechanism of M.HhaI DNA C5 cytosine methyltransferase enzyme: a quantum mechanics/molecular mechanics approach, Proc. Natl. Acad. Sci. USA, 103, 6148–6153, doi: 10.1073/pnas.0601587103.

20. Gu, X., Gustafsson, C., Ku, J., Yu, M., and Santi, D. (1999) Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli, Biochemistry, 38, 4053–4057, doi: 10.1021/bi982364y.

21. Lesnyak, D.V., Osipiuk, J., Skarina, T., Sergiev, P.V., Bogdanov, A.A., Edwards, A., Savchenko, A., Joachimiak, A., and Dontsova, O.A. (2007) Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure, J. Biol. Chem., 282, 5880–5887, doi: 10.1074/jbc.M608214200.

22. Tscherne, J., Nurse, K., Popienick, P., Michel, H., Sochacki, M., and Ofengand, J. (1999) Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli, Biochemistry, 38, 1884–1892, doi: 10.1021/bi981880l.

23. Weitzmann, C., Tumminia, S., Boublik, M., and Ofengand, J. (1991) A paradigm for local conformational control of function in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases, Nucleic Acids Res., 19, 7089–7095, PMID: 1766869.

24. Foster, P., Nunes, C., Greene, P., Moustakas, D., and Stroud, R. (2003) The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate, Structure, 11, 1609–1620, doi: 10.1016/j.str.2003.10.014.

25. Burakovsky, D., Prokhorova, I., Sergiev, P., and Milуn, P. (2012) Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation, Nucleic Acids Res., 40, 7885–-7895, doi: 10.1093/nar/gks508.

26. Prokhorova, I., Osterman, I., Burakovsky, D., and Serebryakova, M. (2013) Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon, Sci. Rep., 3, 3236, doi: 10.1038/srep03236.

27. Andersen, N., and Douthwaite, S. (2006) YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407, J. Mol. Biol., 359, 777–786, doi: 10.1016/j.jmb.2006.04.007.

28. Hallberg, B., Ericsson, U., Johnson, K., Andersen, N., Douthwaite, S., Nordlund, P., Beuscher A.E., and Erlandsen, H. (2006) The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain, J. Mol. Biol., 360, 774–787, doi: 10.1016/j.jmb.2006.05.047.

29. Purta, E., O’Connor, M., Bujnicki, J., and Douthwaite, S. (2008) YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962, J. Mol. Biol., 383, 641–651, doi: 10.1016/j.jmb.2008.08.061.

30. Sunita, S., Tkaczuk, K., Purta, E., Kasprzak, J., Douthwaite, S., Bujnicki, and J., Sivaraman, J. (2008) Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes, J. Mol. Biol., 383, 652–666, doi: 10.1016/j.jmb.2008.08.062.

31. Rodriguez, V., Vasudevan, S., Noma, A., Carlson, B., Green, J., Suzuki, T, and Chandrasekharappa, S.C. (2012) Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW) base in phenylalanine-tRNA, PLoS One, 7, e39297, doi: 10.1371/journal.pone.0039297.

32. Jurkowski, T., and Jeltsch, A. (2011) On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2, PLoS One, 6, e28104, doi: 10.1371/journal.pone.0028104.

33. Goll, M., Kirpekar, F., Maggert, K., Yoder, J., Hsieh, C., Zhang, X., Golic, K., Jacobsen, S., and Bestor, T. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 311, 395–398, doi: 10.1371/journal.pone.0028104.

34. Shanmugam, R., Aklujkar, M., Schдfer, M., Reinhardt, R., Nickel, O., Reuter, G., Lovley, D.R., Ehrenhofer-Murray, A., Nellen, W., Ankri, S., Helm, M., Jurkowski, T.P., and Jeltsch, A. (2014) The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu, Nucleic Acids Res., 42, 6487–6496, doi: 10.1093/nar/gku256.

35. Schaefer, M., Pollex, T., Hanna, K., Tuorto, F., Meusburger, M., Helm, M., and Lyko, F. (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage, Genes Dev., 24, 1590–1595, doi: 10.1101/gad.586710.

36. Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A., and Kay, M. (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing, RNA, 16, 673–695, doi: 10.1261/rna.2000810.

37. Shanmugam, R., Fierer, J., Kaiser, S., Helm, M., Jurkowski, T., and Jeltsch, A. (2015) Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences, Cell Discov., 1, 15010, doi: 10.1038/celldisc.2015.10.

38. Zaborske, J., Vanessa, L., DuMont, B., Wallace, E., Pan, T., Aquadro, C., and Drummond, A. (2014) A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus, PLoS Biol., 12, e1002015, doi: 10.1371/journal.pbio.1002015.

39. Muller, M., Hartmann, M., Schuster, I., Bender, S., Thuring, K., Helm, M., Katze, J., Nellen, W., Lyko, F., and Ehrenhofer-Murray, A. (2015) Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine, Nucleic Acids Res., 43, 10952–10962, doi: 10.1093/nar/gkv980.

40. Schaefer, M., Steringer, J., and Lyko, F. (2008) The Drosophila cytosine-5 methyltransferase Dnmt2 is associated with the nuclear matrix and can access DNA during mitosis, PLoS One, 3, e1414, doi: 10.1371/journal.pone.0001414.

41. Lin, M., Tang, L., Reddy, M., and Shen C. (2005) DNA methyltransferase gene dDnmt2 and longevity of Drosophila, J. Biol. Chem., 280, 861–864, doi: 10.1074/jbc.C400477200.

42. Forbes, S., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., Kok, C.Y., Jia, M., De, T., Teague, J.W., Stratton, M.R., McDermott, U., and Campbell, P.J. (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer, Nucleic Acids Res., 43, 805–811, doi: 10.1093/nar/gku1075. Epub 2014 Oct 29.

43. Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G., Peng, H., Zhang, X., Zhang, Y., Qian, J., Duan, E., Zhai, Q., and Zhou, Q. (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder, Science, 351, 397–400, doi: 10.1126/science.aad7977.

44. Sardana, R., and Johnson, A. (2012) The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits, Mol. Biol. Cell., 23, 4313–4322, doi: 10.1091/mbc.E12-05-0370.

45. Vasilieva, E.N., Laptev, I.G., Sergiev, P.V., and Dontsova, O.A. (2018) The common partners of several methyltransferases modifying components of the eukaryotic translation apparatus, Mol. Biol. (Mosk.), 52, 975–983, doi: 10.1134/S0026898418060174.

46. Sharma, S., Yang, J., Watzinger, P., Kцtter, P., and Entian, K. (2013) Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively, Nucleic Acids Res., 41, 9062–9076, doi: 10.1093/nar/gkt679.

47. Gustafson, W., Taylor, C., Valdez, B., Henning, D., Phippard, A., Ren, Y., Busch, H., and Durban E. (1998) Nucleolar protein p120 contains an arginine-rich domain that binds to ribosomal RNA, Biochem. J., 331, 387–393, PMID: 9531475.

48. Valdez, B.C., Perlaky, L., Henning, D., Saijo, Y., Chan. P.K., and Busch, H. (1994) Identification of the nuclear and nucleolar localization signals of the protein p120 interaction with translocation protein B23, J. Biol. Chem., 269, 23776–23783, PMID: 8089149.

49. Bourgeois, G., Ney, M., Gaspar, I., Aigueperse, C., Schaefer, M., Kellner, S., Helm, M., and Motorin, Y. (2015) Eukaryotic rRNA modification by yeast 5-methylcytosine-methyltransferases and human proliferation-associated antigen p120, PLoS One, 10, e0133321, doi: 10.1371/journal.pone.0133321.

50. Hong, B., Brockenbrough, J., Wu, P., and Aris, P. (1997) Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast, Mol. Cell. Biol., 17, 378–388, PMID: 8972218.

51. Fonagy, A., Swiderski, C., Wilson, A., Bolton, W., Kenyon, N., and Freeman, J. (1993) Cell cycle regulated expression of nucleolar antigen P120 in normal and transformed human fibroblasts, J. Cell. Physiol., 154, 16–27, PMID: 8419402.

52. Perlaky, L., Valdez, B., Busch, R., Larson, R., Jhiang, S., Zhang, W., Brattain, M., and Busch, H. (1992) Increased growth of NIH/3T3 cells by transfection with human p120 complementary DNA and inhibition by a p120 antisense construct, Cancer Res., 52, 428–436, PMID: 1728415.

53. Fonagy, A., Swiderski, C., Ostrovsky, A., Bolton, W., and Freeman, J. (1994) Effect of nucleolar P120 expression level on the proliferation capacity of breast cancer cells, Cancer Res., 54, 1859–1864, PMID: 8137301.

54. Khanna-Gupta, A., Sun, H., Zibello, T., Lozovatsky, L., Ghosh, P., Link, D., McLemore, M., and Berliner, N. (2006) p120 Nucleolar-proliferating antigen is a direct target of G-CSF signaling during myeloid differentiation, J. Leukoc. Biol., 79, 1011–1021, doi: 10.1189/jlb.0205066.

55. Kosi, N., Alić, I., Kolačević, M., Vrsaljko, N., Jovanov, Milošević, N., Sobol, M., and Mitreči, D. (2015) Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain, Brain Res., 1597, 65–76, doi: 10.1016/j.brainres.

56. Blanco, S., Dietmann, S., Flores, J. V., Hussain, S., Kutter, C., Humphreys, P., Lukk, M., Lombard, P., Treps, L., Popis, M., Kellner, S., Hölter, S. M., Garrett, L., Wurst, W., Becker, L., Klopstock, T., Fuchs, H., Gailus-Durner, V., Hrabě de Angelis, M., Káradуttir, R.T., Helm, M., Ule, J., Gleeson, J.G., Odom, D.T., and Frye, M. (2014). Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders, EMBO J., 33, 2020–2039, doi: 10.15252/embj.201489282.

57. Brzezicha, B., Schmidt, M., Makalowska, I., Jarmolowski, A., Pienkowska, J., and Szweykowska-Kulinska, Z. (2006) Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNALeu(CAA), Nucleic Acids Res., 34, 6034–6043, doi: 10.1093/nar/gkl765.

58. Ivanov, P., Emara, M., Villen, J., Steven, P., Gygi, S., and Paul Anderson, P. (2011) Angiogenin-induced tRNA fragments inhibit translation initiation, Mol. Cell., 43, 613–623, doi: 10.1016/j.molcel.2011.06.022.

59. Wang, N., Tang, H., Wang, X., Wang, W., and Feng, J. (2017) Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes, Biochem. Biophys. Res. Commun., 493, 94–99, doi: 10.1016/j.bbrc.2017.09.069.

60. Luo, Y., Feng, J., Xu, Q., Wang, W., and Wang, X. (2016) NSun2 deficiency protects endothelium from inflammation via mRNA methylation of ICAM-1, Circ. Res., 118, 944–956, doi: 10.1161/CIRCRESAHA.115.307674.

61. Tang, H., Fan, X., Xing, J., Liu, Z., Jiang, B., Dou, Y., Gorospe, M., and Wang, W. (2015) NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation, Aging, 7, 1143–1155, doi: 10.18632/aging.100860.

62. Zhang, X., Liu, Z., Yi, J., Tang, H., Xing, J, Yu, M., Tong, T., Shang, Y., Gorospe, M., and Wang, W. (2012) The tRNA methyltransferase NSun2 stabilizes p16INK4 mRNA by methylating the 3′-untranslated region of p16, Nat. Commun., 3, 712, doi: 10.1038/ncomms1692.

63. Khoddami, V., and Cairns, B. (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases, Nat. Biotechnol., 31, 458–464, doi: 10.1038/nbt.2566.

64. Berger, W., Steiner, E., Grusch, M., Elbling, L., and Micksche, M. (2009) Vaults and the major vault protein: novel roles in signal pathway regulation and immunity, Cell. Mol. Life Sci., 66, 43–61, doi: 10.1007/s00018-008-8364-z.

65. Hussain, S., Sajini, A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J., Odom, D., Ule, J., and Frye, M. (2013) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs, Cell Rep., 4, 255–261, doi: 10.1016/j.celrep.2013.06.029.

66. Hussain, S., Benavente, S.B., Nascimento, E., Dragoni, I., Kurowski, A., Gillich, A., Humphreys, P., and Frye, M. (2009) The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability, J. Cell. Biol., 186, 27–40, doi: 10.1083/jcb.200810180.

67. Frye, M., and Watt, F. (2006) The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors, Curr. Biol., 16, 971–981, doi: 101016/j.cub.2006.04.027.

68. Sakita-Suto, S., Kanda, A., Suzuki, F., Sato, S., Takata, T., and Tatsuka, M. (2007) Aurora B regulates RNA methyltransferase NSun2, Mol. Biol. Cell., 18, 1107–1117, doi: 10.1091/mbc.E06-11-1021.

69. Blanco, S., Kurowski, A., Nichols, J., Watt, F., Benitah, S., and Frye, M. (2011) The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate, PLoS Genet., 7, e1002403, doi: 10.1371/journal.pgen.1002403.

70. Hussain, S., Tuorto, F., Menon, S., Blanco, S., Cox, C., Flores, J., Watt, S., Kudo, N., Lyko, F., and Frye, M. (2013) The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation, Mol. Cell. Biol., 33, 1561–1570, doi: 10.1128/MCB.01523-12.

71. Yi, J., Gao, R., Chen, Y., Yang, Z., Han, P., Zhang, H., Dou, Y., Liu, W., Wang, W., Du, G., Xu, Y., and Wang, J. (2017) Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer, Oncotarget, 8, 20751–20765, doi: 10.18632/oncotarget.10612.

72. Abbasi-Moheb, L., Mertel, S., Gonsior, M., Nouri-Vahid, L., Kahrizi, K., Cirak, S., Wieczorek, D., Motazacker, M., Esmaeeli-Nieh, S., Cremer, K., WeiЯmann, R., Tzschach, A., Garshasbi, M., Abedini, S., Najmabadi, H., Ropers, H., Sigrist, S., and Kuss, A. (2012) Mutations in NSUN2 cause autosomal-recessive intellectual disability, Am. J. Hum. Genet., 90, 847–855, doi: 10.1016/j.ajhg.2012.03.021.

73. Martinez, F., Lee, J., Lee, J., Blanco, S., Nickerson, E., Gabriel, S., Frye, M., Al-Gazali, L., and Gleeson, J. (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome, J. Med. Genet., 49, 380–385, doi: 10.1136/jmedgenet-2011-100686.

74. Nakano, S., Suzuki, T., Kawarada, L., Iwata, H., Asano, K., and Suzuki, T. (2016) NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet, Nat. Chem. Biol., 12, 546–551, doi: 10.1038/nchembio.

75. Cantara, W., Murphy, V., Demirci, H., and Agris, P. (2013) Expanded use of sense codons is regulated by modified cytidines in tRNA, Proc. Natl. Acad. Sci. USA, 110, 10964–10969, doi: 10.1073/pnas.1222641110.

76. Haag, S., Sloan, K., Ranjan, N., Warda, A., Kretschmer, J., Blessing, C., Hübner, B., Seikowski, J., Dennerlein, S., Rehling, P., Rodnina, M., Hцbartner, C., and Bohnsack, M. (2016) NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation, EMBO J., 35, 2104–2119, doi: 10.15252/embj.201694885.

77. Trixl, L., Amort, T., Wille, A., Zinni, M., Ebner, S., Hechenberger, C., Eichin, F., Gabriel, H., Schoberleitner, I., Huang, A., Piatti, P., Nat, R., Troppmair, J., and Lusser, A. (2018) RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity, Cell. Mol. Life Sci., 75, 1483–1497, doi: 10.1007/s00018-017-2700-0.

78. Van Haute, L., Dietmann, S., Kremer, L., Hussain, S., Pearce, S., Powell, C., Rorbach, J., Lantaff, R., Blanco, S., Sauer, S., Kotzaeridou, U., Hoffmann, G., Memari, Y., Kolb-Kokocinski, A., Durbin, R., Mayr, J., Frye, M., Prokisch, H., and Minczuka, M. (2016) Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3, Nat. Commun., 7, 12039, doi: 10.1038/ncomms12039.

79. Metodiev, M.D., Spеhr, H., Loguercio Polosa, P., Meharg, C., Becker, C., Altmueller, J., Habermann, B., Larsson, N.G., and Ruzzenente, B. (2014) NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly, PLoS Genetics, 10, e1004110, doi: 10.1371/journal.pgen.1004110.

80. Yakubovskaya, E., Guja, K.E., Mejia, E., Castano, S., Hambardjieva, E., Choi, W.S., and Garcia-Diaz, M. (2012) Structure of the essential MTERF4:NSUN4 protein complex reveals how an MTERF protein collaborates to facilitate rRNA modification, Structure, 20, 1940–1947, doi: 10.1016/j.str.2012.08.027.

81. Spеhr, H.,Habermann, B., Gustafsson, C., Larsson, N., and Hallberg, B. (2012) Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis, Proc. Natl. Acad. Sci. USA, 109, 15253–15258, doi: 10.1073/pnas.1210688109.

82. Cámara, Y., Asin-Cayuela, J., Park, C., Metodiev, M., Shi, Y., Ruzzenente, B., Kukat, C., Habermann, B., Wibom, R., Hultenby, K., Franz, T., Erdjument-Bromage, H., Tempst, P., Hallberg, M., Gustafsson, C.M., and Larsson, N.-G. (2011) MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome, Cell. Metab., 13, 527–539, doi: 10.1016/j.cmet.2011.04.002.

83. Schosserer, M., Minois, N., Angerer, T.B., Amring, M., Dellago, H., Harreither, E., Calle-Perez, A., Pircher, A., Gerstl, M. P., Pfeifenberger, S., Brandl, C., Sonntagbauer, M., Kriegner, A., Linder, A., Weinhдusel, A., Mohr, T., Steiger, M., Mattanovich, D., Rinnerthaler, M., Karl, T., Sharma, S., Entian, K.D., Kos, M., Breitenbach, M., Wilson, I.B., Polacek, N., Grillari-Voglauer, R., Breitenbach-Koller, L., and Grillari, J. (2015) Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan, Nat. Commun., 6, 6158. doi: 10.1038/ncomms7158.

84. Ramani, A K., Li, Z., Hart, G.T., Carlson, M.W., Boutz, D.R., and Marcotte, E.M. (2008) A map of human protein interactions derived from co-expression of human mRNAs and their orthologs, Mol. Systems Biol., 4, 180, doi: 10.1038/msb.2008.19.

85. Haag, S., Warda, A., Kretschmer, J., Gьnnigmann, M., Höbartner, C., and Bohnsack, M. (2015) NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs, RNA, 21, 1532–1543, doi: 10.1261/rna.051524.115.

86. Long, T., Li, J., Li, H., Zhou, M., Zhou, X., Liu, R., and Wang, E. (2016) Sequence-specific and shape-selective RNA recognition by the human RNA 5-methylcytosine methyltransferase NSun6, J. Biol. Chem., 291, 24293–24303, doi: 10.1074/jbc.M116.742569.

87. Liu, R., Long, T., Li, J., Li, H., and Wang, E. (2017) Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6, Nucleic Acids Res., 45, 6684-6697, doi: 10.1093/nar/gkx473.

88. Li, C., Wang, S., Xing, Z., Lin, A., Liang, K., Song, J., Hu, Q., Yao, J., Chen, Z., Park, P.K., Hawke, D.H., Zhou, J., Zhou, Y., Zhang, S., Liang, H., Hung, M.C., Gallick, G.E., Han, L., Lin, C., and Yang, L. (2017) A ROR1-HER3-LncRNA signaling axis modulates the Hippo-YAP pathway to regulate bone metastasis, Nat. Cell Biol., 19, 106–119, doi: 10.1038/ncb3464.

89. Chalmel, F., Rolland, A.D., Niederhauser-Wiederkehr, C., Chung, S.S., Demougin, P., Gattiker, A., Moore, J., Patard, J.J., Wolgemuth, D.J., Jйgou, B., and Primig, M. (2007) The conserved transcriptome in human and rodent male gametogenesis, Proc. Nat. Acad. Sci. USA, 104, 8346–8351, doi: 10.1073/pnas.0701883104.

90. Harris, T., Marquez, B., Suarez, S., and Schimenti, J. (2007) Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases, Biol. Reprod., 77, 376–382, doi: 10.1095/biolreprod.106.058669.

91. Khosronezhad, N., Colagar, A., and Mortazavi, S. (2015) The Nsun7 (A11337)-deletion mutation, causes reduction of its protein rate and associated with sperm motility defect in infertile men, J. Assist. Reprod. Genet., 32, 807–815, doi: 10.1007/s10815-015-0443-0.

92. Khosronejad, N., Colagar, A., and Jorsarayi, S. (2015) T26248G-transversion mutation in exon7 of the putative methyltransferase Nsun7 gene causes a change in protein folding associated with reduced sperm motility in asthenospermic men, Reprod. Fertil. Dev., 27, 471–480, doi: 10.1071/RD13371.

93. Aguilo, F., Li, S., Balasubramaniyan, N., Sancho, A., Benko, S., Zhang, F., Vashisht, A., Rengasamy, M., Andino, B., Chen, C.H., Zhou, F., Qian, C., Zhou, M.M., Wohlschlegel, J.A., Zhang, W., Suchy, F.J., and Walsh, M.J. (2016) Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α, Cell Rep., 14, 479–492, doi: 10.1016/j.celrep.2015.12.043.