БИОХИМИЯ, 2019, том 84, вып. 7, с. 972–984
УДК 616-006.04-091.811-033.2; 611.018.5; 577.2
Интравазация опухолевых клеток — важнейшее звено метастазирования
Обзор
1 Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр РАН, 634009 Томск, Россия; электронная почта: tashireva@oncology.tomsk.ru
2 Сибирский государственный медицинский университет Минздрава России, 634050 Томск, Россия
Поступила в редакцию 20.02.2019
После доработки 10.04.2019
Принята к публикации 10.04.2019
DOI: 10.1134/S0320972519070078
КЛЮЧЕВЫЕ СЛОВА: интравазация, инвазия, гематогенное метастазирование, карциномы, TMEM, экструзия.
Аннотация
В настоящем обзоре обсуждаются современные представления о механизмах интравазации опухолевых клеток в кровеносные и лимфатические сосуды. Интравазация — ключевой этап в метастазировании злокачественных новообразований, в ходе которого опухолевые клетки, проходя через стенку сосудов, попадают в циркуляцию, становясь циркулирующими опухолевыми клетками и потенциальными метастатическими «семенами». Понимание молекулярных механизмов, лежащих в основе интравазации, является критически важным для разработки терапевтических стратегий предотвращения метастатической болезни. В качестве прототипов интравазации опухолевых клеток рассматривается выход зрелых тимоцитов в циркуляцию и дендритных клеток в регионарные лимфатические узлы. В условиях патологии прототипом данного процесса служит реверсная трансэндотелиальная миграция лейкоцитов в кровь из очагов воспаления с участием лиганд-рецепторного взаимодействия сфингозин-1-фосфата и его рецепторов. Отдельно обсуждаются механизмы интравазации, как связанные с инвазией, так и не зависящие от нее. Отмечается место опухолевой мезенхимальной и амебовидной инвазии в интравазации, а также роль в этом процессе неоангиогенеза и ремоделирования сосудов. Особое внимание уделено участию макрофагов в интравазации через паракринную передачу сигналов CSF1–EGF (колониестимулирующий фактор 1 — эпидермальный фактор роста) и механизм, опосредованный TMEM (Tumor MicroEnvironment of Metastasis — метастатическое микроокружение опухоли). Дополнительно рассматривается несколько механизмов интравазации: интравазация благодаря окружению кластеров клеток опухоли эндотелием, вследствие чего они попадают в сосудистое русло; кооперативная интравазация, при которой опухолевая клетка, не обладающая инвазивными свойствами, попадает в кровоток вслед за инвазивной клеткой опухоли; интравазация, связанная с васкулогенной мимикрией, которая проявляется в формировании каналов, выстланных клетками опухоли, подобно эндотелию. В обзоре обращается внимание на возможность существования иных, не обсуждаемых в литературе, механизмов интравазации опухолевых клеток. В заключение подчеркивается важность разработки адресных терапевтических стратегий, препятствующих интравазации.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при поддержке Российского научного фонда (грант № 19-75-30016).
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.
Список литературы
1. Dua, R.S., Gui, G.P., and Isacke, C.M. (2005) Endothelial adhesion molecules in breast cancer invasion into the vascular and lymphatic systems, Eur. J. Surg. Oncol., 31, 824–832, doi: 10.1016/j.ejso.2005.05.015.
2. Chiang, S.P.H., Cabrera, R.M., and Segall, J.E. (2016) Tumor cell intravasation, Am. J. Physiol. Cell Physiol., 311, 1–14, doi: 10.1152/ajpcell.00238.2015.
3. Gil-Henn, H., Patsialou, A., Wang, Y., Warren, M.S., Condeelis, J.S., and Koleske, A.J. (2012) Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo, Oncogene, 32, 2622–2630, doi: 10.1038/onc.2012.284.
4. Roh-Johnson, M., Bravo-Cordero, J.J., Patsialou, A., Sharma, V.P., Guo, P., Liu, H., Hodgson, L., and Condeelis, J. (2014) Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation, Oncogene, 33, 4203–4212, doi: 10.1038/onc.2013.377.
5. Cristofanilli, M., Budd, G.T., Ellis, M.J., Stopeck, A., Matera, J., Miller, M.C., Reuben, J.M., Doyle, G.V., Allard, W.J., Terstappen, L.W., and Hayes, D.F. (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer, N. Engl. J. Med., 351, 781–791, doi: 10.1056/NEJMoa040766.
6. Weinreich, M.A., and Hogquist, K.A. (2008) Thymic emigration: when and how T cells leave home, J. Immunol., 181, 2265–2270, doi: 10.4049/jimmunol.181.4.2265.
7. Schwab, S.R., and Cyster, J.G. (2007) Finding a way out: lymphocyte egress from lymphoid organs, Nat. Immunol., 8, 1295–1301, doi: 10.1038/ni1545.
8. Sanchez, T., and Hla, T. (2004) Structural and functional characteristics of S1P receptors, J. Cell. Biochem., 92, 913–922, doi: 10.1002/jcb.20127.
9. Rosen, H., Gonzalez-Cabrera, P.J., Sanna, M.G., and Brown, S. (2009) Sphingosine 1-phosphate receptor signaling, Annu. Rev. Biochem., 78, 743–768, doi: 10.1146/annurev.biochem.78.072407.103733.
10. Resop, R.S., Douaisi, M., Craft, J., Jachimowski, L.C., Blom, B., and Uittenbogaart, C.H. (2016) Sphingosine-1-phosphate/sphingosine-1-phosphate receptor 1 signaling is required for migration of naive human T cells from the thymus to the periphery, J. Allergy Clin. Immunol., 138, 551–557, doi: 10.1016/j.jaci.2015.12.1339.
11. Zachariah, M.A., and Cyster, J.G. (2010) Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction, Science, 328, 1129–1135, doi: 10.1126/science.1188222.
12. Matloubian, M., Lo, C.G., Cinamon, G., Lesneski, M.J., Xu, Y., Brinkmann, V., Allende, M.L., Proia, R.L., and Cyster, J.G. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor, Nature, 427, 355–360, doi: 10.1038/nature02284.
13. Maeda, Y., Seki, N., Sato, N., Sugahara, K., and Chiba, K. (2010) Sphingosine 1-phosphate receptor type 1 regulates egress of mature T cells from mouse bone marrow, Int. Immunol., 22, 515–525, doi: 10.1093/intimm/dxq036.
14. Chiba, K., Matsuyuki, H., Maeda, Y., and Sugahara, K. (2006) Role of sphingosine 1-phosphate receptor type 1 in lymphocyte egress from secondary lymphoid tissues and thymus, Cell Mol. Immunol., 3, 11–19.
15. Ueno, H., Schmitt, N., Palucka, A.K., and Banchereau, J. (2010) Dendritic cells and humoral immunity in humans, Immunol. Cell Biol., 88, 376–380, doi: 10.1038/icb.2010.28.
16. Seyfizadeh, N., Muthuswamy, R., Mitchell, D.A., Nierkens, S., and Seyfizadeh, N. (2016) Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses, Crit. Rev. Oncol. Hematol., 107, 100–110.
17. Eigenbrod, S., Derwand, R., Jakl, V., Endres, S., and Eigler, A. (2006) Sphingosine kinase and sphingosine-1-phosphate regulate migration, endocytosis and apoptosis of dendritic cells, Immunol. Invest., 35, 149–165, doi: 10.1080/08820130600616490.
18. Gollmann, G., Neuwirt, H., Tripp, C.H., Mueller, H., Konwalinka, G., Heufler, C., Romani, N., and Tiefenthaler, M. (2008) Sphingosine-1-phosphate receptor type-1 agonism impairs blood dendritic cell chemotaxis and skin dendritic cell migration to lymph nodes under inflammatory conditions, Int. Immunol., 20, 911–923, doi: 10.1093/intimm/dxn050.
19. Rathinasamy, A., Czeloth, N., Pabst, O., Forster, R., and Bernhardt, G. (2010) The origin and maturity of dendritic cells determine the pattern of sphingosine 1-phosphate receptors expressed and required for efficient migration, J. Immunol., 185, 4072–4081, doi: 10.4049/jimmunol.1000568.
20. Tauzin, S., Starnes, T.W., Becker, F.B., Lam, P., and Huttenlocher, A. (2014) Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration, J. Cell Biol., 207, 589, doi: 10.1083/jcb.201408090.
21. Buckley, C.D., Ross, E.A., McGettrick, H.M., Osborne, C.E., Haworth, O., Schmutz, C., Stone, P.C., Salmon, M., Matharu, N.M., Vohra, R.K., Nash, G.B., and Rainger, G.E. (2005) Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration, J. Leukoc. Biol., 79, 303–311, doi: 10.1189/jlb.090549621.
22. Joly, E., and Hudrisier, D. (2003) What is trogocytosis and what is its purpose? Nat. Immunol., 4, 815, doi: 10.1038/ni0903-815.
23. Burn, T., and Alvarez, J.I. (2017) Reverse transendothelial cell migration in inflammation: to help or to hinder? Cell. Mol. Life Sci., 74, 1871–1881, doi: 10.1007/s00018-016-2444-2.
24. Sleeman, J.P., Nazarenko, I., and Thiele, W. (2011) Do all roads lead to Rome? Routes to metastasis development, Int. J. Cancer, 128, 2511–2526, doi: 10.1002/ijc.26027.
25. Giampieri, S., Manning, C., Hooper, S., Jones, L., Hill, C.S., and Sahai, E. (2009) Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility, Nat. Cell Biol., 11, 1287–1296, doi: 10.1038/ncb1973.
26. Spano, D., Heck, C., De Antonellis, P., Christofori, G., and Zollo, M. (2012) Molecular networks that regulate cancer metastasis, Semin. Cancer Biol., 22, 234–249, doi: 10.1016/j.semcancer.2012.03.006.
27. Friedl, P., Locker, J., Sahai, E., and Segall, J.E. (2012) Classifying collective cancer cell invasion, Nat. Cell Biol., 14, 777–783, doi: 10.1038/ncb2548.
28. Stoletov, K., Montel, V., Lester, R.D., Gonias, S.L., and Klemke, R. (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish, Proc. Natl. Acad. Sci. USA, 104, 17406–17411, doi: 10.1073/pnas.0703446104.
29. Hana, W., Chenb, S., Yuanc, W., Fana, Q., Tianb, J., Wanga, X., Chend, L., Zhange, X., Weie, W., Liuf, R., Quc, J., Jiaob, Y., Austing, R.H., and Liuf, L. (2016) Oriented collagen fibers direct tumor cell intravasation, Proc. Natl. Acad. Sci. USA, 113, 11208–11213, doi: 10.1073/pnas.1610347113.
30. Pollard, J.W. (2008) Macrophages define the invasive microenvironment in breast cancer, J. Leukoc. Biol., 84, 623–630, doi: 10.1189/jlb.1107762.
31. Lin, E.Y., Gouon-Evans, V., Nguyen, A.V., and Pollard, J.W. (2002) The macrophage growth factor CSF-1 in mammary gland development and tumor progression, J. Mammary Gland Biol. Neoplasia, 7, 147–162, doi: 10.1023/A:1020399802795.
32. Wyckoff, J., Wang, W., Lin, E.Y., Wang, Y., Pixley, F., Stanley, E.R., Graf, T., Pollard, J.W., Segall, J., and Condeelis, J. (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors, Cancer Res., 64, 7022–7029, doi: 10.1158/0008-5472.CAN-04-1449.
33. Van Nguyen, A., and Pollard, J.W. (2002) Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth, Dev. Biol., 247, 11–25, doi: 10.1006/dbio.2002.0669.
34. Yamaguchi, H., Pixley, F., and Condeelis, J. (2006) Invadopodia and podosomes in tumor invasion, Eur. J. Cell Biol., 85, 213–218, doi: 10.1016/j.ejcb.2005.10.004.
35. Arwert, E.N., Harney, A.S., Entenberg, D., Wang, Y., Sahai, E., Pollard, J.W., and Condeelis, J.S. (2018) A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation, Cell Rep., 23, 1239–1248, doi: 10.1016/j.celrep.2018.04.007.
36. Ahirwar, D.K., Nasser, M.W., Ouseph, M.M., Elbaz, M., Cuitino, M.C., Kladney, R.D., Varikuti, S., Kaul, K., Satoskar, A.R., Ramaswamy, B., Zhang, X., Ostrowski, M.C., Leone, G., and Ganju, R.K. (2018) Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation, Oncogene, 37, 4428–4442, doi: 10.1038/s41388-018-0263-7.
37. Leung, E., Xue, A., and Wang, Y. (2017) Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway, Oncogene, 36, 2680–2692, doi: 10.1038/onc.2016.421.
38. Robinson, B.D., Sica, G.L., Liu, Y., Rohan, T.E., Gertler F.B., Condeelis, J.S., and Jones, J.G. (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination, Clin. Cancer Res., 15, 2433–2441, doi: 10.1158/1078-0432.CCR-08-2179.
39. Harney, A.S., Arwert, E.N., Entenberg, D., Wang, Y., Guo, P., Qian, B.Z., Oktay, M.H., Pollard, J.W., Jones, J.G., and Condeelis, J.S. (2015) Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA, Cancer Discov., 5, 932–943, doi: 10.1158/2159-8290.CD-15-0012.
40. Rohan, T.E., Xue, X., Lin, H., D’Alfonso, T.M., Ginter, P.S., Oktay, M.H., Robinson, B.D., Ginsberg, M., Gertler, F.B., Glass, A.G., Sparano, J.A., Condeelis, J.S., and Jones, J.G. (2014) Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer, J. Natl. Cancer Inst., 106, dju136, doi: 10.1093/jnci/dju136.
41. Saharinen, P., Eklund, L., Pulkki, K., Bono, P., and Alitalo, K. (2011) VEGF and angiopoietin signaling in tumor angiogenesis and metastasis, Trends Mol. Med., 17, 347–362, doi: 10.1016/j.molmed.2011.01.015.
42. Wu, X., Giobbie-Hurder, A., Liao, X., Connelly, C., Connolly, E.M., and Li, J. (2017) Angiopoietin-2 as a biomarker and target for immune checkpoint therapy, Cancer Immunol. Res., 5, 17–28, doi: 10.1158/2326-6066.CIR-16-0206.
43. Murdoch, C., Tazzyman, S., Webster, S., and Lewis, C.E. (2007) Expression of Tie-2 by human monocytes and their responses to angiopoietin-2, J. Immunol., 178, 7405–7411, doi: 10.4049/jimmunol.178.11.7405.
44. De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., and Naldini, L. (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors, Cancer Cell, 8, 211–226, doi: 10.1016/j.ccr.2005.08.002.
45. Karagiannis, G.S., Pastoriza, J.M., Wang, Y., Harney, A.S., Entenberg, D., Pignatelli, J., Sharma, V.P., Xue, E.A., Cheng, E., D’Alfonso, T.M., Jones, J.G., Anampa, J., Rohan, T.E., Sparano, J.A., Condeelis, J.S., and Oktay, M.H. (2017) Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism, Sci. Transl. Med., 9, eaan0026, doi: 10.1126/scitranslmed.aan0026.
46. Karagiannis, G.S., Condeelis, J.S., and Oktay, M.H. (2017) Chemotherapy-induced metastasis in breast cancer, Oncotarget, 8, 110733–110734, doi: 10.18632/oncotarget.22717.
47. Coffelt, S.B., Chen, Y.Y., Muthana, M., Welford, A.F., Tal, A.O., Scholz, A., Plate, K.H., Reiss, Y., Murdoch, C., De Palma, M., and Lewis, C.E. (2011) Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion, J. Immunol., 186, 4183–4190, doi: 10.4049/jimmunol.1002802.
48. Ibberson, M., Bron, S., Guex, N., Faes-van’t Hull, E., Ifticene-Treboux, A., Henry, L., Lehr, H.A., Delaloye, J.F., Coukos, G., Xenarios, I., and Doucey, M.A. (2013) TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors, Clin. Cancer Res., 19, 3439–3449, doi: 10.1158/1078-0432.CCR-12-3181.
49. Si, Y., Tsou, C.L., Croft, K., and Charo, I.F. (2010) CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice, J. Clin. Invest., 120, 1192–1203, doi: 10.1172/JCI40310.
50. Johns, J.L., and Christopher, M.M. (2012) Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals, Vet. Pathol., 49, 508–523, doi: 10.1177/0300985811432344.
51. Matsubara, T., Kanto, T., Kuroda, S., Yoshio, S., Higashitani, K., Kakita, N., Miyazaki, M., Sakakibara, M., Hiramatsu, N., Kasahara, A., Tomimaru, Y., Tomokuni, A., Nagano, H., Hayashi, N., and Takehara, T. (2013) TIE2-expressing monocytes as a diagnostic marker for hepatocellular carcinoma correlates with angiogenesis, Hepatology, 57, 1416–1425, doi: 10.1002/hep.25965.
52. Talmadge, J.E., and Gabrilovich, D.I. (2013) History of myeloid-derived suppressor cells, Nat. Rev. Cancer, 13, 739–752, doi: 10.1038/nrc3581.
53. Yang, L., DeBusk, L.M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., Matrisian, L.M., Carbone, D.P., and Lin, P.C. (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis, Cancer Cell, 6, 409–421, doi: 10.1016/j.ccr.2004.08.031.
54. Yang, L., Huang, J., Ren, X., Gorska, A.E., Chytil, A., Aakre, M., Carbone, D.P., Matrisian, L.M., Richmond, A., Lin, P.C., and Moses, H.L. (2008) Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis, Cancer Cell, 13, 23–35, doi: 10.1016/j.ccr.2007.12.004.
55. Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., MacDonald, D.D., Jin, D.K., Shido, K., Kerns, S.A., Zhu, Z., Hicklin, D., Wu, Y., Port, J.L., Altorki, N., Port, E.R., Ruggero, D., Shmelkov, S.V., Jensen, K.K., Rafii, S., and Lyden, D. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche, Nature, 438, 820–827, doi: 10.1038/nature04186.
56. Peinado, H., Zhang, H., Matei, I.R., Costa-Silva, B., Hoshino, A., Rodrigues, G., Psaila, B., Kaplan, R.N., Bromberg, J.F., Kang, Y., Bissell, M.J., Cox, T.R., Giaccia, A.J., Erler, J.T., Hiratsuka, S., Ghajar, C.M., and Lyden, D. (2017) Pre-metastatic niches: organ-specific homes for metastases, Nat. Rev. Cancer, 17, 302–317, doi: 10.1038/nrc.2017.6.
57. Okuno, Y., Nakamura-Ishizu, A., Kishi, K., Suda, T., and Kubota, Y. (2011) Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing, Blood, 117, 5264–5272, doi: 10.1182/blood-2011-01-330720.
58. Deryugina, E.I., and Kiosses, W.B. (2017) Intratumoral cancer cell intravasation can occur independent of invasion into the adjacent stroma, Cell Rep., 19, 601–616, doi: 10.1016/j.celrep.2017.03.064.
59. Sugino, T., Kawaguchi, T., and Suzuki, T. (1993) Sequential process of blood-bornelung metastases of spontaneous mammary carcinoma in C3H mice, Int. J. Cancer, 55, 141–147, doi: 10.1002/ijc.2910550125.
60. Sugino, T., Kusakabe, T., Hoshi, N., Yamaguchi, T., Kawaguchi, T., Goodison, S., Sekimata, M., Homma, Y., and Suzuki, T. (2002) An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model, Am. J. Pathol., 160, 1973–1980, doi: 10.1016/S0002-9440(10)61147-9.
61. Weidner, N. (2002) New paradigm for vessel intravasation by tumor cells, Am. J. Pathol., 160, 1937–1939, doi: 10.1016/S0002-9440(10)61141-8.
62. Kusters, B., Kats, G., Roodink, I., Verrijp, K., Wesseling, P., Ruiter, D.J., de Waal, R.M., and Leenders, W.P. (2007) Micronodular transformation as a novel mechanism of VEGF-A-induced metastasis, Oncogene, 26, 5808–5815, doi: 10.1038/sj.onc.1210360.
63. Kats-Ugurlu, G., Roodink, I., de Weijert, M., Tiemessen, D., Maass, C., Verrijp, K., van der Laak, J., de Waal, R., Mulders, P., Oosterwijk, E., and Leenders, W. (2009) Circulating tumour tissue fragments in patients with pulmonary metastasis of clear cell renal cell carcinoma, J. Pathol., 219, 287–293, doi: 10.1002/path.2613.
64. Aceto, N., Bardia, A., Miyamoto, D.T., Donaldson, M.C., Wittner, B.S., Spencer, J.A., Yu, M., Pely, A., Engstrom, A., Zhu, H., Brannigan, B.W., Kapur, R., Stott, S.L., Shioda, T., Ramaswamy, S., Ting, D.T., Lin, C.P., Toner, M., Haber, D.A., and Maheswaran, S. (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis, Cell, 158, 1110–1122, doi: 10.1016/j.cell.2014.07.013.
65. Tsuji, T., Ibaragi, S., and Hu, G.F. (2009) Epithelial-mesenchymal transition and cell cooperativity in metastasis, Cancer Res., 69, 7135–7139, doi: 10.1158/0008-5472.CAN-09-1618.
66. Lyons, J.G., Lobo, E., Martorana, A.M., and Myerscough, M.R. (2008) Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions, Clin. Exp. Metastasis, 25, 665–677, doi: 10.1007/s10585-007-9134-2.
67. Shen, Y., Quan, J., Wang, M., Li, S., Yang, J., Lv, M., Chen, Z., Zhang, L., Zhao, X., and Yang, J. (2017) Tumor vasculogenic mimicry formation as an unfavorable prognostic indicator in patients with breast cancer, Oncotarget, 8, 56408–56416, doi: 10.18632/oncotarget.16919.
68. Ge, H., and Luo, H. (2018) Overview of advances in vasculogenic mimicry – a potential target for tumor therapy, Cancer Manag. Res., 10, 2429–2437, doi: 10.2147/CMAR.S164675.
69. Gu, Y., Forostyan, T., Sabbadini, R., and Rosenblatt, J. (2011) Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway, J. Cell. Biol., 193, 667–676, doi: 10.1083/jcb.201010075.
70. Gudipaty, S.A., and Rosenblatt, J. (2017) Epithelial cell extrusion: pathways and pathologies, Semin. Cell. Dev. Biol., 67, 132–140, doi: 10.1016/j.semcdb.2016.05.010.
71. Slattum, G., Gu, Y., Sabbadini, R., and Rosenblatt, J. (2014) Autophagy in oncogenic K-Ras promotes basal extrusion of epithelial cells by degrading S1P, Curr. Biol., 24, 19–28, doi: 10.1016/j.cub.2013.11.029.
72. Nakajima, M., Nagahashi, M., Rashid, O.M., Takabe, K., and Wakai, T. (2017) The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications, Tumour Biol., 39, 1010428317699133, doi: 10.1177/1010428317699133.
73. Waeber, C., Blondeau, N., and Salomone, S. (2004) Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors, Drug News Perspect., 17, 365–382.
74. Saito, H., Minamiya, Y., Kitamura, M., Saito, S., Enomoto, K., Terada, K., and Ogawa, J. (1998) Endothelial myosin light chain kinase regulates neutrophil migration across human umbilical vein endothelial cell monolayer, J. Immunol., 161, 1533–1540.
75. McVerry, B.J., and Garcia, J.G. (2004) Endothelial cell barrier regulation by sphingosine 1-phosphate, J. Cell Biochem., 92, 1075–1085, doi: 10.1002/jcb.20088.
76. Lustberg, M.B., Balasubramanian, P., Miller, B., Garcia-Villa, A., Deighan, C., Wu, Y., Carothers, S., Berger, M., Ramaswamy, B., Macrae, E.R., Wesolowski, R., Layman, R.M., Mrozek, E., Pan, X., Summers, T.A., Shapiro, C.L., and Chalmers, J.J. (2014) Heterogeneous atypical cell populations are present in blood of metastatic breast cancer patients, Breast Cancer Res., 16, R23, doi: 10.1186/bcr3622.
77. Akhter, M.Z., Sharawat, S.K., Kumar, V., Kochat, V., Equbal, Z., Ramakrishnan, M., Kumar, U., Mathur, S., Kumar, L., and Mukhopadhyay, A. (2018) Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+CD45+ phenotype, Oncogene, 37, 2089–2103, doi: 10.1038/s41388-017-0106-y.