БИОХИМИЯ, 2019, том 84, вып. 5, с. 648–667
УДК 577.344.2
Регуляция биосинтеза хлорофилла фитохромом А
Обзор
Московский государственный университет им. М.В. Ломоносова, биологический факультет, 119234 Москва, Россия; электронная почта: vsineshchekov@gmail.com; belyaeva0104@gmail.com
Поступила в редакцию 06.12.2018
После доработки 29.01.2019
Принята к публикации 29.01.2019
DOI: 10.1134/S032097251905004X
КЛЮЧЕВЫЕ СЛОВА: биосинтез, хлорофилл(ид), протохлорофилл(ид), регуляция, фотоморфогенез, фитохром А, фитогормоны.
Аннотация
Посвящается профессору Ф.Ф. Литвину в связи с его 90-летием.
Фотосинтетический аппарат выполняет две основные функции в растениях — преобразование солнечной энергии и защиту растений от фотодеструкции. Формирование фотосинтетического аппарата включает скоординированный биосинтез хлорофилла и белков хлорофилл-связывающей матрицы. Свет играет здесь центральную роль, управляя как метаболическими, так и регуляторными процессами. Регулирование достигается за счет работы сложного фоторецепторного аппарата с фитохромной системой в качестве основного компонента. Обзор посвящен биосинтезу хлорофилла и роли фитохрома А в регуляции этого процесса. Рассмотрены основные темновые и световые этапы биосинтеза нативных форм хлорофилла. Описан механизм действия фитохрома А и специфика его состояния в растении, в частности, наличие двух его нативных типов с разными способами действия. Обсуждается специфичность регуляторного влияния фитохрома A на биосинтез предшественника хлорофилла — протохлорофиллида в зависимости от ткани/органа растения, его вида, генетических модификаций и гормонального статуса.
Текст статьи
Сноски
* Адресат для корреспонденции.
Благодарности
Авторы благодарны своему учителю — профессору Ф.Ф. Литвину за его постоянный интерес к их исследованиям и поддержку, а также профессорам P. Galland, T. Lamparter и М. Terry за критический анализ работы и ценные советы.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с участием людей и использованием животных в качестве объектов.
Список литературы
1. Armstrong, G.A., Apel, K., and Rudiger, W. (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci., 5, 40–44, doi: 10.1016/S1360-1385(99)01513-7.
2. Mathews, S. (2010) Evolutionary studies illuminate the structural-functional model of plant phytochromes, Plant Cell, 22, 4–16, doi: 10.1105/tpc.109.072280.
3. Casal, J.J., Candia, A.N., and Sellaro, R. (2013) Light perception and signalling by phytochrome A, J. Exp. Bot., 65, 2835–2845, doi: 10.1093/jxb/ert379.
4. Van Tuinen, A., Kerckhoffs, L.H.J., Nagatani, A.R., Kendrick, E., and Koornneef, M. (1995) Far-red light-insensitive, phytochrome A-deficient mutants of tomato, Mol. Gen. Genet., 246, 133–141, doi: 10.1007/BF00294675.
5. Barnes, S.A., Nishizawa, N.K., Quaggio, R.B., Whitelam, G.C., and Chua, N.H. (1996) Far-red light blocks greening of Arabidopsis seedlings via a phytochrome A-mediated change in plastid development, Plant Cell, 8, 601–615, doi: 10.1105/tpc.8.4.601.
6. McCormac, A.C., and Terry, M.J. (2002) Loss of nuclear gene expression during the phytochrome A-mediated far-red block of greening response, Plant Physiol., 130, 402–414, doi: 10.1104/pp.003806.
7. Meyer, G., Bliedung, H., and Kloppstech, K. (1983) NADPH-protochlorophyllide oxidoreductase: reciprocal regulation in mono-and dicotyledonean plants, Plant Cell Rep., 2, 26–29, doi: 10.1007/BF00269229.
8. Sineshchekov, V., Belyaeva, O., and Sudnitsin, A. (2004) Phytochrome A positively regulates biosynthesis of the active protochlorophyllide in dicots under far-red light, J. Photochem. Photobiol. B: Biol., 74, 47–54, doi: 10.1016/j.jphotobiol.2004.02.001.
9. Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., and Shinomura, T. (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice, Plant Cell, 17, 3311–3325, doi: 10.1105/tpc.105.035899.
10. Sineshchekov, V.A., Loskovich, A.V., Riemann, M., and Nick, P. (2004) The jasmonate-free rice mutant hebiba is affected in the response of phyA’/phyA” pools and protochlorophyllide biosynthesis to far-red light, Photochem. Photobiol. Sci., 3, 1058–1062, doi: 10.1039/B406795A.
11. Sineshchekov, V. (2019) Two molecular species of phytochrome A with distinct modes of action, Funct. Plant Biol., 46, 118–135, doi: 10.1071/FP18156.
12. Sineshchekov, V.A., Koppel, L.A., and Bolle, C. (2018) Two native types of phytochrome A, phyA’ and phyA”, differ by the state of phosphorylation at the N-terminus as revealed by fluorescence investigations of the Ser/Ala mutant of rice phyA expressed in transgenic Arabidopsis, Funct. Plant Biol., 45, 150–159, doi: 10.1071/FP16261.
13. Terry, M.J., and Smith, A.G. (2013) A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis, Front. Plant Sci., 4, 1–14, doi: 10.3389/fpls.2013.00014.
14. Jarvis, P., and Lopez-Juez, E. (2013) Biogenesis and homeostasis of chloroplasts and other plastids, Nat. Rev. Mol. Cell Biol., 14, 787–802, doi: 10.1038/nrm3702.
15. Hsieh, H.L., and Okamoto, H. (2014) Molecular interaction of jasmonate and phytochrome A signaling, J. Exp. Bot., 65, 2847–2857, doi: 10.1093/jxb/eru230.
16. Leivar, P., and Quail, P.H. (2011) PIFs: pivotal components in a cellular signaling hub, Trends Plant Sci., 16, 19–28, doi: 10.1016/j.tplants.2010.08.003.
17. Brzezowski, P., Richter, A.S., and Grimm, B. (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae, Biochim. Biophys. Acta, 1847, 968–985, doi: 10.1016/j.bbabio.2015.05.007.
18. Kobayashi, K., and Masuda, T. (2016) Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana, Front. Plant Sci., 7, 1811–1828, doi: 10.3389/fpls.2016.01811.
19. Kreslavski, V.D., Los, D.A., Schmitt, F.J., Zharmukhamedov, S.K., Kuznetsov, V.V., and Allakhverdiev, S.I. (2018) The impact of the phytochromes on photosynthetic processes, Biochim. Biophys. Acta, 1859, 400–408, doi: 10.1016/j.bbabio.2018.03.003.
20. Mochizuki, N., Tanaka, R., Grimm, B., Masuda, T., Moulin, M., Smith, A.G., Tanaka, A., and Terry, M.J. (2010) The cell biology of tetrapyrroles: a life and death struggle, Trends Plant Sci., 15, 488–498, doi: 10.1016/j.tplants.2010.05.012.
21. Литвин Ф.Ф., Стадничук И.Н. (1980) Длинноволновые предшественники хлорофилла в этиолированных листьях и система нативных форм протохлорофилла, Физиол. растений, 27, 1024–1031.
22. Boddi, B., Ryberg, M., and Sundqvist, C. (1992) Identification of four universal protochlorophyllide forms in dark-grown leaves by analyses of the 77 K fluorescence emission spectra, J. Photochem. Photobiol., 12, 389–401, doi: 10.1016/1011-1344(92)85043-T.
23. Stadnichuk, I.N., Amirjani, M.R., and Sundqvist, C. (2005) Identification of spectral forms of protochlorophyllide in the region 670–730 nm, Photochem. Photobiol. Sci., 4, 230–238, doi: 10.1039/B403170A.
24. Вальтер Г., Беляева О.Б., Игнатов Н.В., Красновский А.А., Литвин Ф.Ф. (1982) Способность к фотопревращению различных форм протохлорофилла (ида) в Phaseolus coccineus, Биологический науки, 9, 35–39.
25. Franck, F., and Strzalka, K. (1992) Detection of the photoactive protochlorophyllide–protein complex in the light during the greening of barley, FEBS Lett., 309, 73–77, doi: 10.1016/0014-5793(92)80742-Y.
26. Seyyedi, M., Timko, M.P., and Sundqvist, C. (1999) Protochlorophyllide, NADPH-protochlorophyllide oxidoreductase, and chlorophyll formation in the lip1 mutant of pea, Plant Cell Physiol., 106, 344–354, doi: 10.1034/j.1399-3054.1999.106313.x.
27. Amirjani, M.R., Sundqvist, K., and Sundqvist, C. (2006) Protochlorophyllide and POR development in dark-grown plants with different proportions of short-wavelength and long-wavelength protochlorophyllide spectral forms, Physiol. Plant, 128, 751–762, doi: 10.1111/j.1399-3054.2006.00789.x.
28. Sundqvist, C., and Dahlin, C. (1997) With chlorophyll pigments from prolamellar bodies to light-harvesting complexes, Physiol. Plant., 1000, 748–759, doi: 10.1111/j.1399-3054.1997.tb00002.x.
29. Schoefs, B., and Franck F. (2008) The photoenzymatic cycle of NADPH: protochlorophyllide oxidoreductase in primary bean leaves (Phaseolus vulgaris) during the first days of photoperiodic growth, Photosynth. Res., 96, 15–26, doi: 10.1007/s11120-007-9274-x.
30. Sundqvist, C., Ryberg, H., Boddi, B., and Lang, F. (1980) Spectral properties of a long-wavelength absorbing form of protochlorophyll in seeds of Cyclanthera explodens, Physiol. Plant, 48, 297–301, doi: 10.1111/j.1399-3054.1980.tb03258.x.
31. Ignatov, N.V., and Litvin, F.F. (1996) Photoconvertion of longer-wavelength protochlorophyll native form Pchlide 682/672 into chlorophyll Chl715/696 in Chlorella vulgaris B-15, Photosynthesis Res., 50, 271–283, doi: 10.1007/BF00033125.
32. Ignatov, N.V., and Litvin, F.F. (2002) A new pathway of chlorophyll biosynthesis from long-wavelength protochlorophyllide Pchlide 686/676 in juvenile etiolated plants, Photosynth. Res., 71, 195–207, doi: 10.1023/A:1015595426181.
33. Беляева О.Б. (2009) Светозависимый биосинтез хлорофилла, БИНОМ, Лаборатория знаний, Москва.
34. Artus, N.N., Ryberg, M., Lindsten, A., Ryberg, H., and Sundqvist, C. (1992) The Sibata shift and the transformation of etioplasts to chloroplasts in wheat with clomazone (FMC 57020) and amiprofos-methyl (Tokunol M), Plant Physiol., 98, 253–263, doi: 10.1104/pp.98.1.253.
35. Kowalewska, L., Mazur, R., Suski, S., Garstka, M., and Mostowska, A. (2016) Three-dimensional visualization of the tubular–lamellar transformation of the internal plastid membrane network during runner bean chloroplast biogenesis, Plant Cell, 28, 875–891, doi: 10.1105/tpc.15.01053.
36. Беляева О.Б., Карнеева Н.В., Стадничук И.Н., Литвин Ф.Ф. (1975) Динамика биосинтеза нативных форм хлорофилла от начальных стадий до завершения процесса зеленения этиолированных листьев, Биохимия, 40, 951–961.
37. Litvin, F.F., and Sineshchekov, V.A. (1975) In Energetics of Photosynthesis (Govindjee ed.), Academic Press, New York, San Francisco, London, pp. 619–661.
38. Литвин Ф.Ф., Синещеков В.А. и Шубин В.В. (1976) Исследование миграции энергии между нативными формами хлорофилла при –196 °С методом сенсибилизированной флуоресценции, Биофизика, 21, 669–675.
39. Griffiths, W.T. (1978) Reconstitution of chlorophyllide formation by isolated etioplast membranes, Biochem. J., 174, 681–692, doi: 10.1042/bj1740681.
40. Wilks, H.M., and Timko, M.P. (1995) A light-dependent complementation system for analysis of NADPH: protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzyme activity, Proc. Natl. Acad. Sci. USA, 92, 724–728, doi: 10.1073/pnas.92.3.724.
41. Meskauskiene, R., Nater, M., Goslings, D., Kessler, F., op den Camp, R., and Apel, K. (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 98, 12826–12831, doi: 10.1073/pnas.221252798.
42. McCormac, A.C., and Terry, M.J. (2004) The nuclear genes Lhcb and HEMA1 are differentially sensitive to plastid signals and suggest distinct roles for the GUN1 and GUN5 plastid-signalling pathways during de-etiolation, Plant J., 40, 672–685, doi: 10.1111/j.1365-313X.2004.02243.x.
43. Martin, G., Leivar, P., Ludevid, D., Tepperman, J.M., Quail, P.H., and Monte, E. (2016) Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network, Nat. Commun., 7, 11431, doi: 10.1038/ncomms11431.
44. Beck, C.F. (2005) Signaling pathways from the chloroplast to the nucleus, Planta, 222, 741–756, doi: 10.1007/s00425-005-0021-2.
45. Krasnovsky, A.A. (1994) Singlet molecular oxygen and primary mechanisms of photo-oxidative damage of chloroplasts. Studies based on detection of oxygen and pigment phosphorescence, Proc. Roy. Soc. Edinb. B Biol., 102, 219–235, doi: 10.1017/S0269727000014147.
46. Reinbothe, S., Reinbothe, C., Apel, K., and Lebedev, N. (1996) Evolution of chlorophyll biosynthesis – the challenge to survive photooxidation, Cell, 86, 703–705, doi: 10.1016/S0092-8674(00)80144-0.
47. Matsumoto, F., Obayashi, T., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K., and Masuda, T. (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system, Plant Physiol., 135, 2379–2391, doi: 10.1104/pp.104.042408
48. Huq, E., Al-Sady, B., Hudson, M., Kim, C., Apel, K., and Quail, P.H. (2004) Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis, Science, 305, 1937–1941, doi: 10.1126/science.1099728.
49. Zhu, X., Chen, J., Xie, Z., Gao, J., Ren, G., Gao, S., Zhou, X., and Kuai, B. (2015) Jasmonic acid promotes degreening via MYC 2/3/4-and ANAC 019/055/072-mediated regulation of major chlorophyll catabolic genes, Plant J., 84, 597–610, doi: 10.1111/tpj.13030.
50. Gendron, J.M., Pruneda-Paz, J.L., Doherty, C.J., Gross, A.M., Kang, S.E., and Kay, S.A. (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor, Proc. Natl. Acad. Sci. USA, 109, 3167–3172, doi: 10.1073/pnas.1200355109.
51. Cheminant, S., Wild, M., Bouvier, F., Pelletier, S., Renou, J.P., Erhardt, M., Hayes, S., Terry, M.J., Genschik, P., and Achard, P. (2011) DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis, Plant Cell, 23, 1849–1860, doi: 10.1105/tpc.111.085233.
52. Xu, X., Paik, I., Zhu, L., and Huq, E. (2015) Illuminating progress in phytochrome-mediated light signaling pathways, Trends Plant Sci., 20, 641–650, doi: 10.1016/j.tplants.2015.06.010.
53. Rockwell, N.C., Su, Y.S., and Lagarias, J.C. (2006) Phytochrome structure and signaling mechanisms, Annu. Rev. Plant Biol., 57, 837–858, doi: 10.1146/annurev.arplant.56.032604.144208.
54. Cherry, J.R., Hondred, D., Walker, J.M., and Vierstra, R.D. (1992) Phytochrome requires the 6-kDa N-terminal domain for full biological activity, Proc. Natl. Acad. Sci. USA, 89, 5039–5043, doi: 10.1073/pnas.89.11.5039.
55. Han, Y.J., Kim, H.S., Kim, Y.M., Shin, A.Y., Lee, S.S., Bhoo, S.H., Song, P.S., and Kim, J.I. (2010) Functional characterization of phytochrome autophosphorylation in plant light signaling, Plant Cell Physiol., 51, 596–609, doi: 10.1093/pcp/pcq025.
56. Sineshchekov, V.A. (2010) Fluorescence and photochemical investigations of phytochrome in higher plants, J. Botany, 1–15, doi: 10.1155/2010/358372.
57. Sineshchekov, V.A. (1995) Photobiophysics and photobiochemistry of the heterogeneous phytochrome system, Biochim. Biophys. Acta, 1228, 125–164, doi: 10.1016/0005-2728(94)00173-3.
58. Gartner, W., and Braslavsky, S.E. (2004) In Photoreceptors and light signaling (Comprehensive series in photochemical and photobiological sciences), Vol. 3 (Batschauer, A. ed.), RSC Publishing, pp. 136–180.
59. Helizon, H., Rosler-Dalton, J., Gasch, P., von Horsten, S., Essen, L.-O., and Zeidler, M. (2018) Arabidopsis phytochrome A nuclear translocation is mediated by a far red elongated hypocotyl 1–importin complex, Plant J., 96, 1255–1268, doi: 10.1111/tpj.14107.
60. Sheerin, D.J., Menon, C., zur Oven-Krockhaus, S., Enderle, B., Zhu, L., Johnen, P., Schleifenbaum, F., Stierhof, Y.D., Huq, E., and Hiltbrunner, A. (2015) Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex, Plant Cell, 27, 189–201, doi: 10.1105/tpc.114.134775.
61. Yang, S.W., Jang, I.C., Henriques, R., and Chua, N.H. (2009) Far-red elongated hypocotyl1 and FHY1-like associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome A signals for inhibition of hypocotyl elongation, Plant Cell, 21, 1341–1359, doi: 10.1105/tpc.109.067215.
62. Chen, F., Shi, X., Chen, L., Dai, M., Zhou, Z., Shen, Y., Li, J., Li, G., Wei, N., and Deng, X.W. (2012) Phosphorylation of far-red elongated hypocotyl1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis, The Plant Cell, 24, 1907–1920, doi: 10.1105/tpc.112.097733.
63. Castillon, A., Shen, H., and Huq, E. (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks, Trends Plants Sci., 12, 514–521, doi/: 10.1016/j.tplants.2007.10.001.
64. Fairchild, C.D., Schumaker, M.A., and Quail, P.H. (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction, Genes Dev., 14, 2377–2391, doi: 10.1101/gad.828000.
65. Rausenberger, J., Tscheuschler, A., Nordmeier, W., Wust, F., Timmer, J., Schafer, E., Fleck, C., and Hiltbrunner, A. (2011) Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light, Cell, 146, 813–825, doi: 10.1016/j.cell.2011.07.023.
66. Kneissl, J., Shinomura, T., Furuya, M., and Bolle, C. (2008) A rice phytochrome A in Arabidopsis: the role of the N-terminus under red and far-red ligh, Mol. Plant, 1, 84–102, doi: 10.1093/mp/ssm010.
67. Casal, J.J., Davis, S.J., Kirchenbauer, D., Viczian, A., Yanovsky, M.J., Clough, R.C., Kircher, S., Jordan-Beebe, E.T., Schafer, E., Nagy, F., and Vierstra, R.D. (2002) The serine-rich N-terminal domain of oat phytochrome a helps regulate light responses and subnuclear localization of the photoreceptor, Plant Physiol., 129, 1127–1137, doi: 10.1104/pp.010977.
68. Trupkin, A., Debrieux, D., Hiltbrunner, A., Fankhauser, C., and Casal, J.J. (2007) The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability, Plant Mol. Biol., 63, 669–678, doi: 10.1007/s11103-006-9115-x.
69. Yanovsky, M.J., Whitelam, G.C., and Casal, J.J. (2000) Fhy3-1 retains inductive responses of phytochrome A, Plant Physiol., 123, 235–242, doi: 10.1104/pp.123.1.235.
70. Beale, S.I. (1990) Biosynthesis of the tetrapyrrole pigment precursor, д-aminolevulinic acid, from glutamate, Plant Physiol., 93, 1273–1279, doi: 10.1104/pp.93.4.1273.
71. Ilag, L.L., Kumar, A.M., and Soll, D. (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis, Plant Cell, 6, 265–275, doi: 10.1105/tpc.6.2.265.
72. Masoner, M., Unser, G., and Mohr, H. (1972) Accumulation of protochlorophyll and chlorophyll a as controlled by photomorphogenically effective light, Planta, 105, 267–272, doi: 10.1007/BF00385398.
73. McCormac, A.C., Fischer, A., Kumar, A.M., Soll, D., and Terry, M.J. (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana, Plant J., 25, 549–561, doi: 10.1046/j.1365-313x.2001.00986.x.
74. McCormac, A.C., and Terry, M.J. (2002) Light-signalling pathways leading to the coordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana, Plant J., 32, 549–559, doi: 10.1046/j.1365-313X.2002.01443.x.
75. Tang, W., Wang, W., Chen, D., Ji, Q., Jing, Y., Wang, H., and Lin, R. (2012) Transposase-derived proteins FHY3/FAR1 interact with phytochrome-interacting factor 1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis, Plant Cell, 24, 1984–2000, doi: 10.1105/tpc.112.097022.
76. Forreiter, C., van Cleve, B., Schmidt, A., and Apel, K. (1991) Evidence for a general light-dependent negative control of NADPH-protochlorophyllide oxidoreductase in angiosperms, Planta, 183, 126–132, doi: 10.1007/BF00197576.
77. Armstrong, G.A., Runge, S., Frick, G., Sperling, U., and Apel, K. (1995) Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana, Plant Physiol., 108, 1505–1517, doi: 10.1104/pp.108.4.1505.
78. Oosawa, N., Masuda, T., Awai, K., Fusada, N., Shimada, H., Ohta, H., and Takamiya, K. (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana, FEBS Lett., 474, 133–136, doi: 10.1016/S0014-5793(00)01568-4.
79. Su, Q., Frick, G., Armstrong, G., and Apel, K. (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light, Plant Mol. Biol., 47, 805–813, doi: 10.1023/A:1013699721301.
80. Kasemir, H. (1979) Control of chloroplast formation by light, Cell Biol. Int. Rep., 3, 197–214, doi: 10.1016/0309-1651(79)90033-X.
81. Kasemir, H., and Prehm, G. (1976) Control of chlorophyll synthesis by phytochrome: III. Does phytochrome regulate the chlorophyllide esterification in mustard seedlings? Planta, 132, 291–295, doi: 10.1007/BF00399729.
82. Jabben, M., and Mohr, H. (1975) Stimulation of the Shibata shift by photochrome in the cotyledons of the mustard seedling Sinapis alba L., Photochem. Photobiol., 22, 55–58, doi: 10.1111/j.1751-1097.1975.tb06721.x.
83. Masoner, M., and Kasemir, H. (1975) Control of chlorophyll synthesis by phytochrome, Planta, 126, 111–117, doi: 10.1007/BF00380614.
84. Rajasekhar, V.K., Guha-Mukherjee, S., and Sopory, S.K. (1983) Time dependence of phytochrome-mediated carotenoid and chlorophyll synthesis in Sorghum bicolor L., Ann. Bot. (London), 52, 159–163, doi: 10.1093/oxfordjournals.aob.a086561.
85. Wu, Z., Zhang, X., He, B., Diao, L., Sheng, S. , Wang, J., Guo, X., Su, N., Wang, L., Jiang, L., Wang, C., Zhai, H., and Wan, J. (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis, Plant Physiol., 145, 29–40, doi: 10.1104/pp.107.100321.
86. Chory, J. (1993) Out of darkness: mutants reveal pathways controlling light-regulated development in plants, Trends Genet., 9, 167–172, doi: 10.1016/0168-9525(93)90163-C.
87. Lau, O.S., and Deng, X.W. (2010) Plant hormone signaling lightens up: integrators of light and hormones, Curr. Opin. Plant Biol., 13, 571–577, doi: 10.1016/j.pbi.2010.07.001.
88. Sperling, U., Cleve, B., Frick, G., Apel, K., and Armstrong, G.A. (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by farred light enhances seedling survival in white light and protects against photooxidative damage, Plant J., 12, 649–658, doi: 10.1046/j.1365-313X.1997.00649.x.
89. Frances, S., White, M.J., Edgerton, M.D., Jones, A.M., Elliott, R.C., and Thompson, W.F. (1992) Initial characterization of a pea mutant with light-independent photomorphogenesis, Plant Cell, 4, 1519–1530, doi: 10.1105/tpc.4.12.1519.
90. Weller, J.L., Murfet I.C., and Reid, J.B. (1997) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection, Plant Physiol., 114, 1225–1236, doi: 10.1104/pp.114.4.1225.
91. Martin, G.E.M., Timko, M.P., and Wilks, H.M. (1997) Purification and kinetic analysis of pea (Pisum sativum L.) NADPH: protochlorophyllide oxidoreductase expressed as a fusion with maltose-binding protein in Escherichia coli, Biochem. J., 325, 139–145, doi: 10.1042/bj3250139.
92. Sineshchekov, V.A., Frances, S., and White, M.J. (1995) Fluorescence and photochemical characterization of phytochrome in de-etiolated pea mutant lip, J. Photochem. Photobiol. B, 28, 47–51, doi: 10.1016/1011-1344(94)07093-4.
93. Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung W.-I., and Choi, G. (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis, Plant J., 47, 124–139, doi: 10.1111/j.1365-313X.2006.02773.x.
94. Toledo-Ortiz, G., Huq, E., and Rodriguez-Concepcion, M. (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-intercting factors, Proc. Natl. Acad. Sci. USA, 107, 11626–11631, doi: 10.1073/pnas.0914428107.
95. DuBell, A.N., and Mullet, J.E. (1995) Differential transcription of pea chloroplast genes during light-induced leaf development (continuous far-red light activates chloroplast transcription), Plant Physiol., 109, 105–112, doi: 10.1104/pp.109.1.105.
96. Антипова Т.В., Гапеева Т.А. Волотовский И.Д. (2004) Фоторегуляция накопления протохлорофиллидоксидоредуктазы и большой субъединицы РБФК/О в клетках трансгенного табака, дефицитного по фитохрому А, Физиология растений, 51, 170–174.
97. Parks, B.M., and Quail, P.H. (1993) hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A, Plant Cell, 5, 39–48, doi: 10.1105/tpc.5.1.39.
98. Runge, S., Sperling, U., Frick, G., Apel, K., and Armstrong, G.A. (1996) Distinct roles for light-dependent NADPH: protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants, Plant J., 9, 513–523, doi: 10.1046/j.1365-313X.1996.09040513.x.
99. Frick, G., Apel, K., and Armstrong, G.A. (1995) in Photosynthesis: from light to biosphere, Vol. 3 (Mathis, P. ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 893–898.
100. Lebedev, N., van Cleve, B., Armstrong, G., and Apel, K. (1995) Chlorophyll synthesis in a deetiolated (det340) mutant of Arabidopsis without NADPH-Protochlorophyllide (PChlide) Oxidoreductase (POR) A and photoactive PChlide-F655, Plant Cell, 7, 2081–2090, doi: 10.1105/tpc.7.12.2081.
101. Sperling, U., Franck, F., van Cleve, B., Frick, G., Apel, K., and Armstrong, G.A. (1998) Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide–F655 to the cop1 photomorphogenic mutant, Plant Cell, 10, 283–296, doi: 10.1105/tpc.10.2.283.
102. Page, M.T., McCormac, A.C., Smith, A.G., and Terry, M.J. (2017) Singlet oxygen initiates a plastid signal controlling photosynthetic gene expression, New Phytol., 213, 1168–1180, doi: 10.1111/nph.14223.
103. Litvin, F.F, and Belyaeva, O.B. (1971) Sequence of photochemical and dark reactions in the terminal stage of chlorophyll biosynthesis, Photosynthetica, 5, 200–209.
104. Schulz, R., and Senger, H. (1993) In Pigment-protein complexes in plastids: synthesis and assembly (Sundqvist, C., and Ryberg, M. eds), Academic Press, Inc., San Diego, California, pp. 179–218.
105. Kittsteiner, U., Paulsen, H., Schendel, R., and Rudiger, W. (1990) Lack of light regulation of NADPH: protochlorophyllide oxido-reductase mRNA in cress seedlings (Lepidium sativum L.), Zeitschrift fur Naturforschung C, 45, 1077–1079, doi: 10.1515/znc-1990-9-1024.
106. Spano, A.J., He, Z., Michel, H., Hunt, D.F., and Timko, M.P. (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.), Plant Mol. Biol., 18, 967–972, doi: 10.1007/BF00019210.
107. He, Z.H., Li, J., Sundqvist, C., and Timko, M.P. (1994) Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L.), Plant Physiol., 106, 537–546, doi: 10.1104/pp.106.2.537.
108. Sineshchekov, V.A., Loskovich, A., Inagaki, N., and Takano, M. (2006) Two native pools of phytochrome a in monocots: evidence from fluorescence investigations of phytochrome mutants of rice, Photochem. Photobiol., 82, 1116–1122, doi: 10.1562/2005-12-10-RA-749.
109. Schendel, R., Dornemann, D., Rudiger, W., and Sineshchekov, V. (1996) Comparative investigations of the effect of 5-aminolevulinate feeding on phytochrome and protochlorophyll (ide) content in dark-grown seedlings of barley, cucumber and cress, J. Photochem. Photobiol. B, 36, 245–253, doi: 10.1016/S1011-1344(96)07390-3.
110. Canton, F.R., and Quail, P.H. (1999) Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis, Plant Physiol., 121, 1207–1215, doi: 10.1104/pp.121.4.1207.
111. Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H., and Furuya, M. (2001) Isolation and characterization of rice phytochrome A mutants, Plant Cell, 13, 521–534, doi: 10.1105/tpc.13.3.521.
112. Lucas, M., and Prat, S. (2014) PIFs get BRright: phytochrome interacting factors as integrators of light and hormonal signals, New Phytol., 202, 1126–1141, doi: 10.1111/nph.12725.
113. Jeong, J., Kim, K., Kim, M.E., Kim, H.G., Heo, G.S., Park, O.K., Park, Y.I., Choi, G., and Oh, E. (2016) Phytochrome and ethylene signaling integration in Arabidopsis occurs via the transcriptional regulation of genes co-targeted by PIFs and EIN3, Front. Plant Sci., 7, 1055, 1–14, doi: 10.3389/fpls.2016.01055.
114. Roy, A., Sahoo, D., and Tripathy, B.C. (2013) Involvement of phytochrome A in suppression of photomorphogenesis in rice seedling grown in red light, Plant Cell Environ., 36, 2120–2134, doi: 10.1111/pce.12099.
115. Zhong, S., Zhao, M., Shi, T., Shi, H., An, F., Zhao, Q., and Guo, H. (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings, Proc. Natl. Acad. Sci. USA, 106, 21431–21436, doi: 10.1073/pnas.0907670106.
116. Riemann, M., Muller, A., Korte, A., Furuya, M., Weiler, E.W., and Nick, P. (2003) Impaired induction of the jasmonate pathway in the rice mutant hebiba, Plant Physiol., 133, 1820–1830, doi: 10.1104/pp.103.027490.
117. Riemann, M., Bouyer, D., Hisada, A., Muller, A., Yatou, O., Weiler, E. W., Takano, M., Furuya, M., and Nick, P. (2009) Phytochrome A requires jasmonate for photodestruction, Planta, 229, 1035–1045, doi: 10.1007/s00425-009-0891-9.
118. Robson, F., Okamoto, H., Patrick, E., Harris, S.R., Wasternack, C., Brearley, C., and Turner, J.G. (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability, Plant Cell, 22, 1143–1160, doi: 10.1105/tpc.109.067728.
119. Ritsema, T., van Zanten, M., Leon-Reyes, A., Voesenek, L.A., Millenaar, F.F., Pieterse, C.M., and Peeters, A.J. (2010) Kinome profiling reveals an interaction between jasmonate, salicylate and light control of hyponastic petiole growth in Arabidopsis thaliana, PLoS One, 5, e14255, https://doi.org/10.1371/journal.pone.0014255.
120. Kim, J.I., Shen, Y., Han, Y.J., Park, J.E., Kirchenbauer, D., Soh, M.S., Nagy, F., Schafer, E., and Song, P.S. (2004) Phytochrome phosphorylation modulates light signaling by influencing the protein–protein interaction, Plant Cell, 16, 2629–2640, doi: 10.1105/tpc.104.023879.
121. Seo, M., Nambara, E., Choi, G., and Yamaguchi, S. (2009) Interaction of light and hormone signals in germinating seeds, Plant Mol. Biol., 69, 463, doi: 10.1007/s11103-008-9429-y.
122. Luccioni, L.G., Oliverio, K.A., Yanovsky, M.J., Boccalandro, H.E., and Casal, J.J. (2002) Brassinosteroid mutants uncover fine tuning of phytochrome signaling, Plant Physiol., 128, 173–181, doi: 10.1104/pp.010668.
123. Sineshchekov, V., Koppel, L., Shor, E., Kochetova, G., Galland, P., and Zeidler, M. (2013) Protein phosphatase activity and acidic/alkaline balance as factors regulating the state of phytochrome A and its two native pools in the plant cell, Photochem. Photobiol., 89, 83–96, doi: 10.1111/j.1751-1097.2012.01226.x.
124. Sineshchekov, V., Koppel, L., and Kim, J.-I. (2019) The dephosphorylated S8A and S18A mutants of (oat) phytochrome A comprise its two species, phyA’ and phyA”, suggesting that autophosphorylation at these sites is not involved in the phyA differentiation, Photochem. Photobiol. Sci., doi: 10.1039/C8PP00574E.