БИОХИМИЯ, 2019, том 84, вып. 5, с. 634–647
УДК 577.344.2
Перспективы оптогенетического протезирования дегенеративной сетчатки глаза
Обзор
1 Институт биохимической физики им. Н.М. Эмануэля РАН, 119334 Москва, Россия; электронная почта: ostrovsky3535@mail.ru
2 Московский государственный университет им. М.В. Ломоносова, кафедра молекулярной физиологии, 199991 Москва, Россия
3 Институт биоорганический химии им. М.М. Шемякина и Ю.А. Овчинникова РАН, 117997 Москва, Россия; электронная почта: kirpichnikov@inbox.ru
4 Московский государственный университет им. М.В. Ломоносова, биологический факультет, кафедра биоинженерии, 199991 Москва, Россия
Поступила в редакцию 26.09.2018
После доработки 22.12.2018
Принята к публикации 24.12.2018
DOI: 10.1134/S0320972519050038
КЛЮЧЕВЫЕ СЛОВА: оптогенетика, ретинальсодержащие белки, канальные родопсины, меланопсин, зрительный родопсин, дегенеративная сетчатка, ганглиозные клетки.
Аннотация
Обзор посвящен перспективам протезирования дегенеративной (слепой) сетчатки глаза и использованию родопсинов как «инструментов» такого протезирования. Коротко излагается принцип оптогенетических методов. Рассмотрены ретинальсодержащие белки, деполяризующие и гиперполяризующие плазматическую мембрану нервной клетки, и, соответственно, возбуждающие и тормозящие ее физиологическую активность. Подробно обсужден вопрос о том, какие именно клетки дегенеративной сетчатки и какими родопсинами могут быть протезированы. Рассмотрены вирусы и промоторы, необходимые и подходящие для доставки гена родопсина в определенные клетки дегенеративной сетчатки. В заключении сформулированы основные положения и задачи, связанные с оптогенетическим протезированием дегенеративной сетчатки с помощью родопсинов.
Текст статьи
Сноски
* Адресат для корреспонденции.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Все применимые международные, национальные и институциональные принципы ухода и использования животных были соблюдены.
Список литературы
1. Deisseroth, K. (2011) Optogenetics, Nat. Methods, 8, 26–29, doi: 10.1038/nmeth.f.324.
2. Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nat. New Biol., 233, 149–152, doi: 10.1038/newbio233149a0.
3. Litvin, F.F., Sineshchekov, O.A., and Sineshchekov, V.A. (1978) Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis, Nature, 271, 476–478, doi: 10.1038/271476a0.
4. Sineshchekov, O.A., Jung, K.H., and Spudich, J.L. (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 99, 8689–8694, doi: 10.1073/pnas.122243399.
5. Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc. Natl. Acad. Sci. USA, 100, 13940–13945, doi: 10.1073/pnas.1936192100.
6. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005) Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci., 8, 1263–1268, doi: 10.1038/nn1525.
7. Островский М.А., Фельдман Т.Б. (2012) Химия и молекулярная физиология зрения: светочувствительный белок родопсин, Успехи химии, 81, 1071–1090.
8. Островский М.А. (2012) Молекулярная физиология зрительного пигмента родопсина, Биологические мембраны, 29, 38–50.
9. Grote, M., Engelhard, M., and Hegemann, P. (2014) On ion pumps, sensors and channels – perspectives on microbial rhodopsins: between science and history, Biochim. Biophys. Acta, 1837, 533–545, doi: 0.1016/j.bbabio.2013.08.006.
10. Kaneko, A., Inoue, K., Kojima, K., Kandori, Y., and Sudo, Y. (2017) Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering, Biophys. Rev., 9, 861–876, doi: 10.1007/s12551-017-0335-x.
11. Wiegert, S., Mahn, M., Prigge, M., Printz,Y., and Yizhar, O. (2017) Silencing neurons: tools, applications and experimental constraints, Neuron, 95, 504–529, doi.org/10.1016/j.neuron.2017.06.050.
12. Cohen, E.D. (2018) Retinal prostheses, In Webvision: the organization of the retina and visual system (Kolb, H., Fernandez, E., and Nelson, R, eds), Salt Lake City (UT), University of Utah Health Sciences Center.
13. Островский М.А. (2017) Родопсин: эволюция и сравнительная физиология, Палеонтологический журнал, 5, 103–113, doi: 10.7868/S0031031X17050063.
14. Deisseroth, K., and Hegemann, P. (2017) The form and function of channelrhodopsin, Science, 357, 5544, doi: 10.1126/science.aan5544.
15. Bi, A., Cui, J., Ma, Y.P., Olshevskaya, E., Pu, M., Dizhoor, A.M., and Pan, Z.H. (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration, Neuron, 50, 23–33, doi: 10.1016/j.neuron.2006.02.026.
16. Prigge, M., Schneider, F., Tsunoda, S.P., Shilyansky, C., Wietek, J., Deisseroth, K., and Hegemann, P. (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics, J. Biol. Chem., 287, 31804–3181, doi: 10.1074/jbc.M112.391185.
17. Lin, J.Y, Knutsen, P.M., Muller, A., Kleinfeld, D., and Tsien, R.Y. (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation, Nat. Neurosci.,161499–1508, doi: 10.1038/nn.3502.
18. Sengupta, A., Chaffiol, A., Macе, E., Caplette, R., Desrosiers, M., Lampic, M., Forster, V., Marre, O., Lin, J.Y., Sahel, J.A., Picaud, S., Dalkara, D., and Duebel, J. (2016) Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina, EMBO Mol. Med., 8, 1248–1264, doi: 10.15252/emmm.201505699.
19. Mager, T., Lopez, D., de la Morena, Senn, V., Schlotte, J., D’Errico, A., Feldbauer, K., Wrobel, C., Jung, S., Bodensiek, K., Rankovic, V., Browne, L., Huet, A., Juttner, J., Wood, P.G., Letzkus, J.J., Moser, T., and Bamberg, E. (2018) High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics, Nat. Commun., 9, 1750, doi: 10.1038/s41467-018-04146-3.
20. Sato, M., Sugano, E., Tabata, K., Sonnohe, K., Watanabe, Y., Ozaki., T., Tamai, M., and Tomita, H. (2017) Visual responses of photoreceptor-degenerated rats expressing two different types of channelrhodopsin genes, Sci. Rep., 7, 41210, doi: 10.1038/srep41210 1.
21. Greco, J.A., Wagner, N.L., Jensen, R.J., and Birge, R.R. (2017) Stimulation of retinal ganglion cells using an ion-mediated, protein-based retinal implant, Invest. Ophthalmol. Vis. Sci., 58, 4184.
22. Berndt, A., Lee, S.Y., Wietek, J., Ramakrishnan, C., Steinberg, E.E., Rashid, A.J., Kim, H., Park, S., Santoro, A., Frankland, P.W., Lyer, S.M., Pak, S., Ahrlund-Richter, S., Delp, S.L., Malenka, R.C., Josselyn, S.A., Carlen, M., Hegemann, P., and Deisseroth, K. (2016) Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity, Proc. Natl. Acad. Sci. USA, 113, 822–829, doi: 10.1073/pnas.1523341113.
23. Wietek, J., Wiegert, J.S., Adeishvili, N., Schneider, F., Watanabe, H., Tsunoda, S.P., Vogt, A., Elstner, M., Oertner, T.G., and Hegemann, P. (2014) Conversion of channelrhodopsin into a light-gated chloride channel, Science, 344, 409–412, doi: 10.1126/science.1249375.
24. Долгих Д.А., Малышев А.Ю., Саложин С.В., Некрасова О.В., Петровская Л.Е., Рощин М.В., Бородинова А.А., Фельдман Т.Б., Балабан П.М., Кирпичников М.П., Островский М.А. (2015) Анионный канальный родопсин, экспрессированный в культуре нейронов и in vivo в мозге мыши: светоиндуцированное подавление генерации потенциалов действия, Доклады Aкадемии наук, 465, 737–740, doi: 10.7868/S086956521536030X.
25. Govorunova, E.G., Sineshchekov, O.A., Janz, R., Liu, X., and Spudich, J.L. (2015) Natural light-gated anion channels: a family ofmicrobial rhodopsins for advanced optogenetics, Science, 349, 647–650, doi: 10.1126/science.aaa7484.
26. Li, H., Sineshchekov, O.A., Wu, G., and Spudich, J.L. (2016) In vitro activity of a purified natural anion channelrhodopsin, J. Biol. Chem., 291, 25319–25325, doi: 10.1074/jbc.C116.760041.
27. Govorunova, E.G., Sineshchekov, O.A., Li, H., and Spudich, J.L. (2017) Microbial rhodopsins: diversity, mechanisms, and optogenetic applications, Ann. Rev. Biochem., 86, 845–872, doi: 10.1146/annurev-biochem-101910-144233.
28. Долгих Д.А., Малышев А.Ю., Рощин М.В., Смирнова Г.Р., Некрасова О.В., Петровская Л.Е., Фельдман Т.Б., Балабан П.М., Кирпичников М.П., Островский М.А. (2016) Сравнительная характеристика двух анионных канальных родопсинов и перспективы их применения в оптогенетике, Доклады Академии наук, 471, 729–731, doi: 10.7868/S0869565216360238.
29. Malyshev, A.Y., Smirnova, G.R., Dolgikh, D.A., Balaban, P.M., and Ostrovsky, M.A. (2017) Chloride conducting light activated channel GtACR2 can produce both cessation of firing and generation of action potentials in cortical neurons in response to light, Neurosci. Lett., 640, 76–80, doi: 10.1016/j.neulet.2017.01.026.
30. Messier, J.E., Chen, H., Cai, Z.L., and Xue, M. (2018) Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon, Elife, 9, e38506, doi: 10.7554/eLife.38506.
31. Bourne, R.R.A, Flaxman, S.R., Braithwaite, T., Cicinelli, M.V., Das, A., Jonas, J.B., Keeffe, J., Kempen, J.H., Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K., Resnikoff, S., Silvester, A., Stevens, G.A., Tahhan, N., Tien, Y., Wong, T.Y., and Taylor H.R. (2017) Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis, Lancet Glob. Health, 5, 888–897, doi: 10.1016/S2214-109X(17)30293-0.
32. Duncan, J.L., Pierce, E.A., Laster, A.M., Daiger, S.P., Birch, D.G., Ash, J.D., Iannaccone, A., Flannery, J.G., Sahel, J.A., Zack, D.J., and Zarbin, M.A. (2018) Inherited retinal degenerations: current landscape and knowledge gaps, Trans. Vis. Sci. Tech., 7, 6, doi: 10.1167/tvst.7.4.6.
33. RetNet: http://www.sph.uth.tmc.edu/RetNet/. Accessed July 9, 2018.
34. Baker, C.K. and Flannery, J.G. (2018) Innovative optogenetic strategies for vision restoration, Front. Cell Neurosci., 12, 316, doi: 10.3389/fncel.2018.00316.
35. Petit, L., Khanna, H., and Punzo, C. (2016) Advances in gene therapy for diseases of the eye, Hum. Gene Ther., 27, 563–579, doi: 10.1089/hum.2016.040.
36. Yue, L., Weiland, J.D., Roska, B., and Humayun, M.S., (2016) Retinal stimulation strategies to restore vision: fundamentals and systems, Prog. Retin. Eye Res., 53, 21–47. doi: 10.1016/j.preteyeres.2016.05.002.
37. Jones, B.W, Kondo, M, Terasaki, H, Lin, Y., McCall, M, and Marc, R.E. (2012) Retinal remodeling, Jpn. J. Ophthalmol., 56, 289–306, doi: 10.1007/s10384-012-0147-2.
38. Curcio, C.A., Medeiros, N.E., and Millican, C.L. (1996) Photoreceptor loss in age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 37, 1236–1249.
39. Marc, R.E., Jones, B.W., Anderson, J.R., Kinard, K., Marshak, D.W., Wilson, J.H., Wensel, T., and Lucas, R.J. (2007) Neural reprogramming in retinal degeneration, Invest. Ophthalmol. Vis. Sci., 48, 3364–3371, doi: 10.1167/iovs.07-0032.
40. Mazzoni, F., Novelli, E., and Strettoi, E. (2008). Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration, J. Neurosci., 28, 14282–14292, doi: 10.1523/JNEUROSCI.4968-08.2008.
41. Medeiros, N.E., and Curcio, C.A. (2001) Preservation of ganglion cell layer neurons in age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 42, 795–803, doi: iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/932912/.
42. Hartong, D.T., Berson, E.L., and Dryja, T.P. (2006) Retinitis pigmentosa, Lancet, 368, 1795–1809, doi: 10.1016/S0140-6736(06)69740-7.
43. Strettoi, E., and Pignatelli, V. (2000) Modifications of retinal neurons in a mouse model of retinitis pigmentosa, Proc. Natl. Acad. Sci. USA, 97, 11020–11025, doi: 10.1073/pnas.190291097.
44. Lin, B., Masland, R.H., and Strettoi, E. (2009) Remodeling of cone photoreceptor cells after rod degeneration in rd mice, Exp. Eye Res., 88, 589–599, doi: 10.1016/j.exer.2008.11.022.
45. Jacobson, S.G., Sumaroka, A., Luo, X. and Cideciyan, A.V. (2013) Retinal optogenetic therapies: clinical criteria for candidacy, Clin. Genet., 84, 175–182, doi: 10.1111/cge.12165.
46. Busskamp, V., and Roska, B. (2011) Optogenetic approaches to restoring visual function in retinitis pigmentosa, Curr. Opin. Neurobiol., 21, 942–946, doi: 10.1016/j.conb.2011.06.001.
47. Khabou, H., Garita-Hernandez, M., Chaffiol, A., Reichman, S., Jaillard, C., Brazhnikova, E., Bertin, S., Forster, V., Desrosiers, M., Winckler, C., Goureau, O., Picaud, S., Duebel, S., Sahel, J.A., and Dalkara D. (2018) Noninvasive gene delivery to foveal cones for vision restoration, JCI Insight, 3, 96029, doi: 10.1172/jci.insight.96029.
48. Lin, Y., Jones, B.W., Liu, A., Tucker, J.F., Rapp, K., Luo, L., Baehr, W., Bernstein, P.S., Watt, C.B., Yang, J.H., Shaw, M.V., and Marc, R.E. (2012) Retinoid receptors trigger neuritogenesis in retinal degenerations, FASEB J., 26, 81–92, doi: 10.1096/fj.11-192914.
49. Nakajima, Y., Moriyama, M., Hattori, M., Minato, N., and Nakanishi, S. (2009) Isolation of ON bipolar cell genes via hrGFP-coupled cell enrichment using the mGluR6 promoter, J. Biochem., 145, 811–818, doi: 10.1093/jb/mvp038.
50. Lagali, P.S., Balya, D., Awatramani, G.B., Munch, T.A., Kim, D.S., Busskamp, V., Cepko, C.L., and Roska, B. (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration, Nat. Neurosci., 11, 667–675, doi: 10.1038/nn.2117.
51. Dalkara, D., Byrne, L.C., Klimczak, R.R., Visel, M., Yin, L., Merigan, W.H., Flannery J.G., and Schaffer, D.V. (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous, Sci. Transl. Med., 5, 189ra76, doi: 10.1126/scitranslmed.3005708.
52. Cronin, T., Vandenberghe, L.H., Hantz, P., Juttner, J., Reimann, A., Kacso, A.E., Huckfeldt, R.M., Busskamp, V., Konler, H., Lagali, P.S., Roska, B., and Bennett, J. (2014) Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter, EMBO Mol. Med., 6, 1175–1190, doi: 10.15252/emmm.201404077.
53. Mace, E, Caplette, R, Marre, O.,Sengupta, A., Chaffoli, A., Barbe, P., Desrosiers, M., Bamberg, E., Sahel, J.A., Picaud, S., Duebel, J and Dalkara, D. (2015) Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice, Mol. Ther., 23, 7–16, doi:10.1038/mt.2014.154.
54. Van Wyk, M., Pielecka-Fortuna, J., Lowel, S., and Kleinlogel, S. (2015) Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool, PLoS Biol., 13, e1002143, doi: 10.1371/journal.pbio.1002143.
55. Koizumi, A, Tanaka, K.F, and Yamanaka, A. (2013) The manipulation of neural and cellular activities by ectopic expression of melanopsin, Neurosci. Res., 75, 3–5, doi: 10.1016/j.neures.2012.07.010.
56. De Silva, S. R., Barnard, A.R., Hughes, S., Tam, S.K.E. Martin, C., Singh, M.S., Barnea-Cramer, A.O., McClements, M.E., During, M.J., Peirson, S.N., Hankins, M.W., and MacLaren, R.E. (2017) Long-term restoration of visual function in end-stage retinal degeneration using subretinal human melanopsin gene therapy, Proc. Natl. Acad. Sci. USA, 114, 11211–11216, doi: 10.1073/pnas.1701589114.
57. Cehajic-Kapetanovic, J., Eleftheriou, C., Allen, A.E., Milosavljevic, N., Pienaar, A., Bedford, R., Davis, K.E., Bishop, P.N., and Lucas, R.J. (2015) Restoration of vision with ectopic expression of human rod opsin, J. Curr. Biol., 25, 2111–2122, doi: 10.1016/j.cub.2015.07.029.
58. Gaub, B.M., Berry, M.H., Holt, A.E., Reiner, A., Kienzler, M.A., Dolgova, N., Nikonov, S., Aguirre, G.D., Beltran, W.A., Flannery, J,G., and Isacoff, E.Y. (2014) Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells, Proc. Natl. Acad. Sci. USA, 111, 5574–5583, doi: 10.1073/pnas.1414162111.
59. Gaub, B.M., Berry, M.H., Holt, A.E., Isacoff, E.Y., and Flannery, J.G. (2015) Optogenetic vision restoration using rhodopsin for enhanced sensitivity, Mol. Ther., 23, 1562–1571, doi: 10.1038/mt.2015.121.
60. Gaub, B.M, Berry, M.H, Visel, M., Holt, A.E., Isacoff, E.Y., and Flannery, J.G. (2018) Optogenetic retinal gene therapy with the light gated GPCR vertebrate rhodopsin, Methods Mol. Biol., 1715, 177–189, doi: 10.1007/978-1-4939-7522-8_12.
61. Wang, J.S., and Kefalov, V.J. (2011) The cone-specific visual cycle, Prog. Retin. Eye Res., 30, 115–128, doi: 10.1016/j.preteyeres.2010.11.001.
62. Williams, S. (2017) Optogenetic therapies move closer to clinical use, Scientist.
63. Nirenberg, S., and Pandarinath, C. (2012) Retinal prosthetic strategy with the capacity to restore normal vision, Proc. Nat. Acad. Sci. USA, 109, 15012–15017, doi: 10.1073/pnas.1207035109.
64. Reutsky-Gefen, I., Golan,L., Farah, N., Schejter, A., Tsur, L., Brosh, I., and Shoham, S. (2013) Holographic optogenetic stimulation of patterned neuronal activity for vision restoration, Nat. Commun., 4, 1509, doi:10.1038/ncomms2500.
65. Шелепин К.Ю., Пронин С.В., Шелепин. Ю.Е. (2015) Распознавание фрагментированных изображений и возникновение «инсайта», Оптический журнал, 82, 72–80.
66. Caporale, N., Kolstad, K.D., Lee, T., Tochitsky, I., Dalkara, D., Trauner, D., Kramer, R., Dan, Y., Isacoff, E.Y., and Flannery, J.G. (2011) LiGluR restores visual responses in rodent models of inherited blindness, Mol. Ther., 19, 1212–1219, doi: 10.1038/mt.2011.103.
67. Greenberg, K.P., Pham, A., and Werblin, F.S. (2011) Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism, Neuron, 69, 713–720, doi: 10.1016/j.neuron.2011.01.024.
68. Ivanova, E., and Pan, Z-H. (2009) Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina, Mol. Vis., 15, 1680–1689.
69. Tomita, H., Sugano, E., Isago, H., Hiroi, T., Wang, Z., Ohta, E., and Tamai, M. (2010) Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats, Exp. Eye Res., 90, 429–436, doi: 10.1016/j.exer.2009.12.006.
70. Wu, C., Ivanova, E, Zhang, Y., and Zhuo-Hua, P. (2013) rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo, PLoS One, 8, 66332, doi: 10.1371/journal.pone.0066332.
71. Zhang, Y., Ivanova, E., Bi, A., and Pan, Z.H. (2009) Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration, J. Neurosci., 29, 9186–9196, doi: 10.1523/JNEUROSCI.0184-09.2009.
72. Chaffiol, A., Caplette, R., Jaillard, C., Brazhnikova, E., Desrosiers, M., Dubus, E, Duhamel, L., Mace, E., Marre, O., Benoit, P., Hantraye, P., Bemelmans, A.P., Bamberg, E., Duebel, J., Sahel, J.A., Picaud, S., and Dalkara, D. (2017) A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina, Mol. Ther., 25, 2546–2560, doi: 10.1016/j.ymthe.2017.07.011.
73. Wang, W., Nan, Y., Pan, Z.H., and Pu, M. (2017) Morphological evaluation of retinal ganglion cells expressing the L132C/T159C ChR2 mutant transgene in young adult cynomolgus monkeys, Sci. China Life Sci., 60, 1157–1167, doi: 10.1007/s11427-017-9055-x.
74. Zrenner, E., Bartz-Schmidt, K.U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.P., Gekeler, F., Greppmaier, U., Harscher, A., Kibbel, S., Koch, J., Kusnyerik, A., Peters, T., Stingl, K., Sachs, H., Stett, A., Szurman, P., Wilhelm, B., and Wilke, R. (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words, Proc. Biol. Sci., 278, 1489–1497, doi: 10.1098/rspb.2010.1747.
75. Da Cruz, L., Coley, B.F., Dorn, J.D., Merlini, F., Filley, E., Christopher, P., Chen, F.K., Wuyyuru, V., Sahel, J., Stanga, P.E., Humayun, M., Greenberg, R.J., and Dagnelie, G. (2013) The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss, Br. J. Ophthalmol., 97, 632–636, doi: 10.1136/bjophthalmol-2012-301525.
76. Chader, G.J., Weiland, J., and Humayun, M.S. (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis, Prog. Brain Res., 175, 317–332, doi: 10.1016/S0079-6123(09)17522-2.
77. Humayun, M.S., Dorn, J.D., da Cruz, L., Dagnelie, G., Sahel, J.A., Stanga, P.E., Cideciyan, A.V., Duncan, J.L., Eliott, D., Filley, E., Ho, A.C., Santos, A., Safran, A.B., Arditi, A., Del Priore, L.V., and Greenberg, R.J. (2012) Interim results from the international trial of Second Sight’s visual prosthesis, Ophthalmology, 119, 779–788, doi: 10.1016/j.ophtha.2011.09.028.
78. Shepherd, R.K., Shivdasani, M.N., Nayagam, D.A., Williams, C.E., and Blamey, P.J. (2013) Visual prostheses for the blind, Trends Biotechnol., 31, 562–571, doi: 10.1016/j.tibtech.2013.07.001.
79. Beyeler, M., Rokem, A., Boynton, G.M., and Fine, I. (2017) Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies, J. Neural Eng., 14, 051003, doi: 10.1088/1741-2552/aa795e.
80. Planul, A., and Dalkara, D (2017) Vectors and gene delivery to the retina, Ann. Rev. Vis. Sci., 3, 121–140, doi: 10.1146/annurev-vision-102016-061413.
81. Hickey, D.G., Edwards, T.L., Barnard, A.R., Singh, M.S., de Silva, S.R., McClements, M.E., Flannery, J.G., Hankins, M.W., and MacLaren R.E. (2017) Tropism of engineered and evolved recombinant AAV serotypes in the rd1 mouse and ex vivo primate retina, Gene Ther., 24, 787–800, doi: 10.1038/gt.2017.85.
82. Buck, T.M., Pellissier, L.P., Vos, R.M., van Dijk, E.H.C., Boon, C.J.F., and Wijnholds, J. (2018) AAV serotype testing on cultured human donor retinal explants, Methods Mol. Biol., 1715, 275–288, doi: 10.1007/978-1-4939-7522-8_20.
83. Van Wyk, M., Hulliger, E.C., Girod, L., Ebneter, A., and Kleinlogel, S. (2017) Present molecular limitations of ON-bipolar cell targeted gene therapy, Front. Neurosci., 11, 161, doi: 10.3389/fnins.2017.00161.