БИОХИМИЯ, 2019, том 84, вып. 4, с. 571–579
УДК 577.214
σ24-Субъединица РНК-полимеразы Escherichia coli способна вызывать паузы транскрипции in vitro*
Институт молекулярной генетики Российской академии наук, 123182 Москва, Россия; электронная почта: telomer1@rambler.ru
Поступила в редакцию 02.11.2018
После доработки 05.12.2018
Принята к публикации 12.12.2018
DOI: 10.1134/S0320972519040109
КЛЮЧЕВЫЕ СЛОВА: паузы транскрипции, РНК-полимераза, альтернативные σ-факторы, Gre-белки.
Аннотация
Бактерия Escherichia coli имеет семь σ-факторов, которые связываются с кор-ферментом РНК-полимеразы (РНКП) и обеспечивают узнавание разных групп промоторов. Ранее было показано, что σ70 и σ38-субъединицы могут также взаимодействовать с элонгационным комплексом (ЭК) и вызывать паузы транскрипции, узнавая последовательности ДНК, которые напоминают –10-элемент промотора. В данной работе исследована способность σ32, σ28 и σ24-субъединиц вызывать паузы транскрипции in vitro в реконструированных ЭК, содержащих соответствующие консенсусные –10-элементы. Показано, что σ24-субъединица способна вызывать паузу транскрипции в зависимости от наличия –10-элемента. Формирование паузы подавляется Gre-факторами транскрипции. Обнаружено, что некоторые природные промоторы содержат потенциальные сигналы σ24-зависимых пауз в начале транскрибируемой области. Это позволяет предположить, что такие паузы могут играть регуляторную роль в транскрипции.
Текст статьи
Сноски
* Первоначально английский вариант рукописи опубликован на сайте «Biochemistry» (Moscow) http://protein.bio.msu.ru/biokhimiya, в рубрике «Papers in Press», BM 18-301, 11.02.2019.
** Адресат для корреспонденции.
Финансирование
Работа выполнена при финансовой поддержке РНФ (грант 16-14-10377).
Благодарности
Авторы благодарят И. Арцимович за предоставленную плазмиду (pVS10), А. Огиенко за тестирование активности σ28-субъединицы, а также рецензентов за ценные замечания по редактированию рукописи.
Конфликт интересов
Авторы заявляют об отсутствии конфликта по вопросам финансирования и другим вопросам при исполнении данной работы.
Список литературы
1. Feklistov, A., Sharon, B.D., Darst, S.A., and Gross, C.A. (2014) Bacterial sigma factors: a historical, structural, and genomic perspective, Annu. Rev. Microbiol., 68, 357–376, doi: 10.1146/annurev-micro-092412-155737.
2. Gruber, T.M., and Gross, C.A. (2003) Multiple sigma subunits and the partitioning of bacterial transcription space, Annu. Rev. Microbiol., 57, 441–466, doi: 10.1146/annurev.micro.57.030502.090913.
3. Paget, M.S. (2015) Bacterial sigma factors and anti-sigma factors: structure, function and distribution, Biomolecules, 5, 1245–1265, doi: 10.3390/biom5031245.
4. Zhang, N., Darbari, V.C., Glyde, R., Zhang, X., and Buck, M. (2016) The bacterial enhancer-dependent RNA polymerase, Biochem. J., 473, 3741–3753, doi: 10.1042/BCJ20160741C.
5. Lonetto, M., Gribskov, M., and Gross, C.A. (1992) The sigma 70 family: sequence conservation and evolutionary relationships, J. Bacteriol., 174, 3843–3849, doi: 10.1128/jb.174.12.3843-3849.1992.
6. Iyer, L.M., and Aravind, L. (2012) Insights from the architecture of the bacterial transcription apparatus, J. Struct. Biol., 179, 299–319, doi: 10.1016/j.jsb.2011.12.013.
7. Maciag, A., Peano, C., Pietrelli, A., Egli, T., De Bellis, G., and Landini, P. (2011) In vitro transcription profiling of the sigmaS subunit of bacterial RNA polymerase: re-definition of the sigmaS regulon and identification of sigmaS-specific promoter sequence elements, Nucleic Acids Res., 39, 5338–5355, doi: 10.1093/nar/gkr129.
8. Liu, B., Zuo, Y., and Steitz, T.A. (2016) Structures of E. coli sigmaS-transcription initiation complexes provide new insights into polymerase mechanism, Proc. Natl. Acad. Sci. USA, 113, 4051–4056, doi: 10.1073/pnas.1520555113.
9. White-Ziegler, C.A., Um, S., Perez, N.M., Berns, A.L., Malhowski, A.J., and Young, S. (2008) Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12, Microbiology, 154, 148–166, doi: 10.1099/mic.0.2007/012021-0.
10. Battesti, A., Majdalani, N., and Gottesman, S. (2011) The RpoS-mediated general stress response in Escherichia coli, Annu. Rev. Microbiol., 65, 189–213, doi: 10.1146/annurev-micro-090110-102946.
11. Zhao, K., Liu, M., and Burgess, R.R. (2007) Adaptation in bacterial flagellar and motility systems: from regulon members to «foraging»-like behavior in E. coli, Nucleic Acids Res., 35, 4441–4452, doi: 10.1093/nar/gkm456.
12. Nonaka, G., Blankschien, M., Herman, C., Gross, C.A., and Rhodius, V.A. (2006) Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress, Genes Dev., 20, 1776–1789, doi: 10.1101/gad.1428206.
13. Neidhardt, F.C., VanBogelen, R.A., and Lau, E.T. (1983) Molecular cloning and expression of a gene that controls the high-temperature regulon of Escherichia coli, J. Bacteriol., 153, 597–603, doi: 10.1016/0092-8674(83)90396-3.
14. Grossman, A.D., Erickson, J.W., and Gross, C.A. (1984) The htpR gene product of E. coli is a sigma factor for heat-shock promoters, Cell, 38, 383–390.
15. Komeda, Y. (1986) Transcriptional control of flagellar genes in Escherichia coli K-12, J. Bacteriol., 168, 1315–1318, doi: 10.1128/jb.168.3.1315-1318.1986.
16. Komeda, Y., Kutsukake, K., and Iino, T. (1980) Definition of additional flagellar genes in Escherichia coli, K12, Genetics, 94, 277–290.
17. Arnosti, D.N., and Chamberlin, M.J. (1989) Secondary sigma factor controls transcription of flagellar and chemotaxis genes in Escherichia coli, Proc. Natl. Acad. Sci. USA, 86, 830–834.
18. Barrios, A.F., Zuo, R., Ren, D., and Wood, T.K. (2006) Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility, Biotechnol. Bioeng., 93, 188–200, doi: 10.1002/bit.20681.
19. Lipinska, B., Sharma, S., and Georgopoulos, C. (1988) Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription, Nucleic Acids Res., 16, 10053–10067.
20. Wang, Q.P., and Kaguni, J.M. (1989) A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli, J. Bacteriol., 171, 4248–4253.
21. Rouviere, P.E., De Las Penas, A., Mecsas, J., Lu, C.Z., Rudd, K.E., and Gross, C.A. (1995) rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in Escherichia coli, EMBO J., 14, 1032–1042.
22. Egler, M., Grosse, C., Grass, G., and Nies, D.H. (2005) Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli, J. Bacteriol., 187, 2297–2307, doi: 10.1128/JB.187.7.22972307.2005.
23. Angerer, A., Enz, S., Ochs, M., and Braun, V. (1995) Transcriptional regulation of ferric citrate transport in Escherichia coli K-12. Fecl belongs to a new subfamily of sigma 70-type factors that respond to extracytoplasmic stimuli, Mol. Microbiol., 18, 163–174.
24. Bar-Nahum, G., and Nudler, E. (2001) Isolation and characterization of sigma(70)-retaining transcription elongation complexes from Escherichia coli, Cell, 106, 443–451, doi: 10.1016/S0092-8674(01)00461-5.
25. Kapanidis, A.N., Margeat, E., Laurence, T.A., Doose, S., Ho, S.O., Mukhopadhyay, J., Kortkhonjia, E., Mekler, V., Ebright, R.H., and Weiss, S. (2005) Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis, Mol. Cell, 20, 347–356, doi: 10.1016/j.molcel.2005.10.012.
26. Mukhopadhyay, J., Kapanidis, A.N., Mekler, V., Kortkhonjia, E., Ebright, Y.W., and Ebright, R.H. (2001) Translocation of sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA, Cell, 106, 453–463, doi: 10.1016/S0092-8674(01)00464-0.
27. Mooney, R.A., Davis, S.E., Peters, J.M., Rowland, J.L., Ansari, A.Z., and Landick, R. (2009) Regulator trafficking on bacterial transcription units in vivo, Mol. Cell, 33, 97–108, doi: 10.1016/j.molcel.2008.12.021.
28. Raffaelle, M., Kanin, E.I., Vogt, J., Burgess, R.R., and Ansari, A.Z. (2005) Holoenzyme switching and stochastic release of sigma factors from RNA polymerase in vivo, Mol. Cell, 20, 357–366, doi: 10.1016/j.molcel.2005.10.011.
29. Harden, T.T., Wells, C.D., Friedman, L.J., Landick, R., Hochschild, A., Kondev, J., and Gelles, J. (2016) Bacterial RNA polymerase can retain sigma70 throughout transcription, Proc. Natl. Acad. Sci. USA, 113, 602–607, doi: 10.1073/pnas.1513899113.
30. Brodolin, K., Zenkin, N., Mustaev, A., Mamaeva, D., and Heumann, H. (2004) The sigma 70 subunit of RNA polymerase induces lacUV5 promoter-proximal pausing of transcription, Nat. Struct. Mol. Biol., 11, 551–557, doi: 10.1038/nsmb768.
31. Goldman, S.R., Nair, N.U., Wells, C.D., Nickels, B.E., and Hochschild, A. (2015) The primary sigma factor in Escherichia coli can access the transcription elongation complex from solution in vivo, eLife, 4, e10514, doi: 10.7554/eLife.10514.
32. Mooney, R.A., Darst, S.A., and Landick, R. (2005) Sigma and RNA polymerase: an on-again, off-again relationship? Mol. Cell, 20, 335–345, doi: 10.1016/j.molcel.2005.10.015.
33. Zhilina, E., Esyunina, D., Brodolin, K., and Kulbachinskiy, A. (2012) Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during sigma-dependent pausing, Nucleic Acids Res., 40, 3078–3091, doi: 10.1093/nar/gkr1158.
34. Petushkov, I., Esyunina, D., and Kulbachinskiy, A. (2017) Sigma38-dependent promoter-proximal pausing by bacterial RNA polymerase, Nucleic Acids Res., 45, 3006–3016, doi: 10.1093/nar/gkw1213.
35. Perdue, S.A., and Roberts, J.W. (2011) Sigma(70)-dependent transcription pausing in Escherichia coli, J. Mol. Biol., 412, 782–792, doi: 10.1016/j.jmb.2011.02.011.
36. Ring, B.Z., Yarnell, W.S., and Roberts, J.W. (1996) Function of E. coli RNA polymerase sigma factor sigma70 in promoter-proximal pausing, Cell, 86, 485–493, doi: 10.1016/S0092-8674(00)80121-X.
37. Marr, M.T., Datwyler, S.A., Meares, C.F., and Roberts, J.W. (2001) Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins, Proc. Natl. Acad. Sci. USA, 98, 8972–8978, doi: 10.1073/pnas.161253298.
38. Nickels, B.E., Mukhopadhyay, J., Garrity, S.J., Ebright, R.H., and Hochschild, A. (2004) The sigma70 subunit of RNA polymerase mediates a promoter-proximal pause at the lac promoter, Nat. Struct. Mol. Biol., 11, 544–550, doi: 10.1038/nsmb757.
39. Zenkin, N., Kulbachinskiy, A., Yuzenkova, Y., Mustaev, A., Bass, I., Severinov, K., and Brodolin, K. (2007) Region 1,2 of the RNA polymerase sigma subunit controls recognition of the -10 promoter element, EMBO J., 26, 955–964, doi: 10.1038/sj.emboj.7601555.
40. Devi, P.G., Campbell, E.A., Darst, S.A., and Nickels, B.E. (2010) Utilization of variably spaced promoter-like elements by the bacterial RNA polymerase holoenzyme during early elongation, Mol. Microbiol., 75, 607–622, doi: 10.1111/j.1365-2958.2009.07021.x.
41. Perdue, S.A., and Roberts, J.W. (2010) A backtrack-inducing sequence is an essential component of Escherichia coli sigma(70)-dependent promoter-proximal pausing, Mol. Microbiol., 78, 636–650, doi: 10.1111/j.1365-2958.2010.07347.x.
42. Strobel, E.J., and Roberts, J.W. (2014) Regulation of promoter-proximal transcription elongation: enhanced DNA scrunching drives lambdaQ antiterminator-dependent escape from a sigma70-dependent pause, Nucleic Acids Res., 42, 5097–5108, doi: 10.1093/nar/gku147.
43. Deighan, P., Pukhrambam, C., Nickels, B.E., and Hochschild, A. (2011) Initial transcribed region sequences influence the composition and functional properties of the bacterial elongation complex, Genes Dev., 25, 77–88, doi: 10.1101/gad.1991811.
44. Petushkov, I., Esyunina, D., and Kulbachinskiy, A. (2017) Possible roles of sigma-dependent RNA polymerase pausing in transcription regulation, RNA Biol., 14, 1678–1682, doi: 10.1080/15476286.2017.1356568.
45. Svetlov, V., and Artsimovitch, I. (2015) Purification of bacterial RNA polymerase: tools and protocols, Methods Mol. Biol., 1276, 13–29, doi: 10.1007/978-1-4939-2392-2_2.
46. Pupov, D., Kuzin, I., Bass, I., and Kulbachinskiy, A. (2014) Distinct functions of the RNA polymerase sigma subunit region 3,2 in RNA priming and promoter escape, Nucleic Acids Res., 42, 4494–4504, doi: 10.1093/nar/gkt1384.
47. Anthony, L.C., Foley, K.M., Thompson, N.E., and Burgess, R.R. (2003) Expression, purification of, and monoclonal antibodies to sigma factors from Escherichia coli, Methods Enzymol., 370, 181–192, doi: 10.1016/S0076-6879(03)70016-0.
48. Laptenko, O., and Borukhov, S. (2003) Biochemical assays of Gre factors of Thermus thermophilus, Methods Enzymol., 371, 219–232, doi: 10.1016/S0076-6879(03)71016-7.
49. Rhodius, V.A., Suh, W.C., Nonaka, G., West, J., and Gross, C.A. (2006) Conserved and variable functions of the sigmaE stress response in related genomes, PLoS Biol., 4, e2, doi: 10.1371/journal.pbio.0040002.
50. Strobel, E.J., and Roberts, J.W. (2015) Two transcription pause elements underlie a sigma70-dependent pause cycle, Proc. Natl. Acad. Sci. USA, 112, 4374–4380, doi: 10.1073/pnas.1512986112.
51. Campagne, S., Marsh, M.E., Capitani, G., Vorholt, J.A., and Allain, F.H. (2014) Structural basis for -10 promoter element melting by environmentally induced sigma factors, Nat. Struct. Mol. Biol., 21, 269–276, doi: 10.1038/nsmb.2777.
52. Marr, M.T., and Roberts, J.W. (2000) Function of transcription cleavage factors GreA and GreB at a regulatory pause site, Mol. Cell, 6, 1275–1285, doi: 10.1016/S1097-2765(00)00126-X.
53. Borukhov, S., Sagitov, V., and Goldfarb, A. (1993) Transcript cleavage factors from E. coli, Cell, 72, 459–466, doi: 10.1016/0092-8674(93)90121-6.
54. Laptenko, O., Lee, J., Lomakin, I., and Borukhov, S. (2003) Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase, EMBO J., 22, 6322–6334, doi: 10.1093/emboj/cdg610.
55. Grigorova, I.L., Phleger, N.J., Mutalik, V.K., and Gross, C.A. (2006) Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA, Proc. Natl. Acad. Sci. USA, 103, 5332–5337, doi: 10.1073/pnas.0600828103.
56. Jishage, M., Iwata, A., Ueda, S., and Ishihama, A. (1996) Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions, J. Bacteriol., 178, 5447–5451, doi: 10.1128/jb.178.18.5447-5451.
57. Zhilina, E., Miropolskaya, N., Bass, I., Brodolin, K., and Kulbachinskiy, A. (2011) Characteristics of sigma-dependent pausing in RNA polymerases from E. coli and T. aquaticus, Biochemistry (Moscow), 76, 1348–1358, doi: 10.1134/S0006297911100038.
58. Hatoum, A., and Roberts, J. (2008) Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation, Mol. Microbiol., 68, 17–28, doi: 10.1111/j.1365-2958.2008.06138.x.