БИОХИМИЯ, 2019, том 84, вып. 4, с. 461–480

УДК 577.171.6

Изоформы рецептора пролактина как основа тканеспецифического разнообразия его эффектов в норме и патологии

Обзор

© 2019 П.А. Абрамичева *, О.В. Смирнова

Московский государственный университет им. М.В. Ломоносова, биологический факультет, 119991 Москва, Россия; электронная почта: abramicheva.polina@gmail.com

Поступила в редакцию 06.04.2018
После доработки 25.10.2018
Принята к публикации 25.10.2018

DOI: 10.1134/S0320972519040018

Аннотация

В обзоре рассмотрены функциональные и структурные особенности различных изоформ пролактинового рецептора, механизмы активации сигнальных путей, а также ключевые молекулярные посредники в передаче и терминации сигнала от разных изоформ пролактинового рецептора. Проанализирована динамика изменения соотношения изоформ рецепторов пролактина, ключевых посредников сигнальных путей и терминации рецепции в различных органах и тканях. Обсуждается вопрос, какую роль это соотношение и молекулярные посредники играют в реализации нормальных физиологических функций и развитии патологий. Часть обзора посвящена путям терапевтической коррекции нарушений пролактинового сигналинга.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с использованием людей и животных в качестве объектов.

Список литературы

1. Surarit, R., Krishnamra, N., and Seriwatanachai, D. (2016) Prolactin receptor and osteogenic induction of prolactin in human periodontal ligament fibroblasts, Cell Biol. Int., 40, 419–427, doi: 10.1002/cbin.10580.

2. Pascual-Mathey, L., Rojas-Duran, F., Aranda-Abreu, G., Manzo, J., Herrera-Covarrubias, D., Munoz-Zavaleta, D., Garcia, L., and Hernandez, M. (2016) Effect of hyperprolactinemia on PRL-receptor expression and activation of STAT and MAPK cell signaling in the prostate of long-term sexually-active rats, Physiol. Behav., 157, 170–177, doi: 10.1016/j.physbeh.2016.02.011.

3. Yonezawa, T., Chen, K., Ghosh, М., Rivera, L., Dill, R., Ma, L., Villa, P., Kawaminami, M., and Walker, A. (2015) Anti-metastatic outcome of isoform-specific prolactin receptor targeting in breast cancer, Cancer Lett., 366, 84–92, doi: 10.1016/j.canlet.2015.06.010.

4. Abramicheva, P., Balakina, T., Bulaeva, Guseva, A., Lopina, O., and Smirnova, O. (2017) Role of Na+/K+ ATPase in natriuretic effect of prolactin in a model of cholestasis of pregnancy, Biochemistry (Moscow), 82, 632–641, doi: 10.1134/S000629791705011X.

5. Marano, R., and Ben-Jonathan, N. (2014) Extrapituitary prolactin: an update on the distribution, regulation, and functions, Mol. Endocrinol., 28, 622–633, doi: 10.1210/me.2013-1349.

6. Corbacho, A., Martinez de la Escalera, G., and Clapp, C. (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis, J. Endocrinol., 173, 219–238, doi: 10.1677/joe.0.1730219.

7. Ben-Jonathan, N., LaPensee, C.R., and LaPensee, E.W. (2008) What can we learn from rodents about prolactin in humans? Endocrinol. Rev., 29, 1–41, doi: 10.1210/er.2007-0017.

8. Cohen, I.R., Lajtha, N.S.A., Paoletti, R., and Lambris, J.D. (2014) Recent advances in prolactin research, Springer.

9. Hu, Z., Zhuang, L., and Dufau, M.L. (1996) Multiple and tissue-specific promoter control of gonadal and non-gonadal prolactin receptor gene expression, J. Biol. Chem., 271, 10242–10246, doi: 10.1074/jbc.271.17.10242.

10. Hu, Z., Zhuang, L., Meng, J., Leondires, M., and Dufau, M. (1999) The human prolactin receptor gene structure and alternative promoter utilization: the generic promoter hPIII and a novel human promoter hP(N), J. Clin. Endocrinol. Metab., 84, 1153–1156.

11. Hu, Z., Zhuang, L., Meng, J., Tsai-Morris, C., and Dufau, M. (2002) Complex 5′-genomic structure of the human prolactin receptor: multiple alternative exons 1 and promoter utilization, Endocrinology, 143, 2139–2142.

12. Leondires, M.P., Hu, Z., Dong, J., and Dufau, M.L. (2002) Estradiol stimulates expression of two human prolactin receptor isoforms with alternative exons-1 in T47D breast cancer cells, J. Steroid. Biochem. Mol. Biol., 82, 263–268.

13. Kavarthapu, R., and Dufau, M.L. (2017) Essential role of endogenous prolactin and CDK7 in estrogen-induced upregulation of the prolactin receptor in breast cancer cells, Oncotarget, 8, 27353–27363.

14. Kavarthapu, R., and Dufau, M.L. (2016) Role of EGF/ERBB1 in the transcriptional regulation of the prolactin receptor independent of estrogen and prolactin in breast cancer cells, Oncotarget, 7, 65602–65613.

15. Gertler, A., Grosclaude, J., Strasburger, C.J., Nir, S., and Djiane, J. (1996) Real-time kinetic measurements of the interactions between lactogenic hormones and prolactin-receptor extracellular domains from several species support the model of hormone-induced transient receptor dimerization, J. Biol. Chem., 271, 24482–24491.

16. Ali, S., Pellegrini, I., and Kelly, P.A. (1991) A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor, J. Biol. Chem. Am. Soc. Biochem. Mol. Biol., 266, 20110–20117.

17. Kline, J.B., Roehrs, H., and Clevenger, C.V. (1999) Functional characterization of the intermediate isoform of the human prolactin receptor, J. Biol. Chem. Am. Soc. Biochem. Mol. Biol., 274, 35461–35468, doi: 10.1074/JBC.274.50.35461.

18. Tan, D., and Walker, A.M. (2010) Short form 1b human prolactin receptor down-regulates expression of the long form, J. Mol. Endocrinol., 44, 187–194, doi: 10.1677/JME-09-0101.

19. Freeman, M.E., Kanyicska, B., Lerant, A., and Nagy, G. (2000) Prolactin: structure, function, and regulation of secretion, Physiol. Rev., 80, 1523–1631, doi: 10.1152/physrev.2000.80.4.1523.

20. Bouilly, J., Sonigo, C., Auffret, J., Gibori, G., and Binart, N. (2012) Prolactin signaling mechanisms in ovary, Mol. Cell. Endocrinol., 356, 80–87, doi: 10.1016/j.mce.2011.05.004.

21. Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., and Kelly, P.A. (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice, Endocrinol. Rev., 19, 225–268.

22. Zhang, C., Nygaard, M., Haxholm, G.W., Boutillon, F., Bernadet, M., Hoos, S., and Goffin,V. (2015) A residue quartet in the extracellular domain of the prolactin receptor selectively controls mitogen-activated protein kinase signaling, J. Biol. Chem., 290, 11890–11904, doi: 10.1074/jbc.M115.639096.

23. Howard, J.K., and Flier, J.S. (2006) Attenuation of leptin and insulin signaling by SOCS proteins, Trends Endocrinol. Metab., 17, 365–371, doi: 10.1016/j.tem.2006.09.007.

24. Clevenger, C.V., Furth, P.A. Hankinson, S.E., and Schuler, L.A. (2003) The role of prolactin in mammary carcinoma, Endocr. Rev., 24, 1–27, doi: 10.1210/er.2001-0036.

25. Rycyzyn, M.А, and Clevenger, C.V. (2002) The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer, Proc. Natl. Acad. Sci. USA, 99, 6790–6795, doi: 10.1073/pnas.092160699.

26. Russell, D.L., and Richards, J.S. (1999) Differentiation-dependent prolactin responsiveness and stat (signal transducers and activators of transcription) signaling in rat ovarian cells, Mol. Endocrinol., 13, 2049–2064, doi: 10.1210/mend.13.12.0389.

27. Downward, J. (1994) The GRB2/Sem-5 adaptor protein, FEBS Lett., 338, 113–117.

28. Llovera, M., Pichard, C., Bernichtein, S., Kelly, P.A., and Goffin, V. (2000) Human prolactin (hPRL) antagonists inhibit hPRL-activated signaling pathways involved in breast cancer cell proliferation, Oncogene, 19, 4695–4705.

29. Huang, K., Ueda, E., Chen, Y., and Walker, A.M. (2008) Paradigm-shifters: phosphorylated prolactin and short prolactin receptors, J. Mammary Gland Biol. Neoplasia, 13, 69–79, doi: 10.1007/s10911-008-9072-x.

30. Devi, S.Y., and Halperin, J. (2014) Reproductive actions of prolactin mediated through short and long receptor isoforms, Mol. Cell. Endocrinol., 382, 400–410, doi: 10.1016/j.mce.2013.09.016.

31. Devi, Y.S., Seibold, A.M., Shehu, A. M., Halperin, J., Le, J., Binart, N., Bao, L., and Gibori, G. (2011) Inhibition of MAPK by prolactin signaling through the short form of its receptor in the ovary and decidua: involvement of a novel phosphatase, J. Biol. Chem., 286, 7609–7618, doi: 10.1074/jbc.M110.166603.

32. Binart, N., Imbert-bollore, P., Baran, N., Viglietta, C., and Kelly, P.A. (2003) A short form of the prolactin (PRL) receptor is able to rescue mammopoiesis in heterozygous prl receptor mice, Mol. Endocrinol., 17, 1066–1074, doi: 10.1210/me.2002-0181.

33. Chen, C.C., Stairs, D.B., Boxer, R.B., Belka, G.K., Horseman, N.D., Alvarez, J.V., and Chodosh, L.A. (2012) Autocrine prolactin induced by the PTEN-Akt pathway is required for lactation initiation and provides a direct link between the Akt and STAT5 pathways, Genes Dev., 26, 2154–2168, doi: 10.1101/gad.197343.112.

34. Aksamitienea, E., Achantaa, S., Kolch, W., Kholodenko, B., Hoeka, J., and Kiyatkin, A. (2011) Prolactin-stimulated activation of ERK1/2 mitogen-activated protein kinases is controlled by PI3-Kinase/Rac/PAK signaling pathway in breast cancer cells, Cell Signal., 23, 1794–1805, doi: 10.1016/j.cellsig. 2011.06.014.

35. Peck, A.R., Witkiewicz, A.K., Liu, C., Klimowicz, A.C., Stringer, G.A., Pequignot, E., and Rui, H. (2012) Low levels of STAT5a protein in breast cancer are associated with tumor progression and unfavorable clinical outcomes, Breast Cancer Res., 14, 30, doi: 10.1186/bcr3328.

36. Liao, S., Li, J., Yu, L., and Sun, S. (2017) Protein tyrosine phosphatase 1B expressioncontributes to the development of breast cancer, J. Zhejiang Univ. Sci. B, 18, 334–342, doi: 10.1631/jzus.B1600184.

37. Johnson, K.J., Peck, A.R., Schaber, J.D., and Witkiewicz, A.K. (2010) PTP1B suppresses prolactin activation of STAT5 in breast cancer cells, Am. J. Pathol., 177, 2971–2983, doi: 10.2353/ajpath.2010.090399.

38. Creamer, B.A., Sakamoto, K., Schmidt, J.W., Triplett, A.A., Moriggl, R., and Wagner, K. (2010) STAT5 promotes survival of mammary epithelial cells through transcriptional activation of a distinct promoter in Akt1, Mol. Cell. Biol., 30, 2957–2970, doi: 10.1128/MCB.00851-09.

39. Roberts, P.J., and Der, C.J. (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer, Oncogene, 26, 3291–3310, doi: 10.1038/sj.onc.1210422.

40. Clevenger, C.V, and Medaglia, M.V. (1994) The protein tyrosine kinase p5gfyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes, Mol. Endocrinol., 8, 674–681.

41. Juan, A., and Rez, J.M.N. (2000) Stimulation of c-Src by prolactin is independent of Jak2, J. Biochem., 345, 17–24.

42. Watkin, H., Richert, M.M., Lewis, A., Terrell, K., Mcmanaman, J.P., and Anderson, S.M. (2008) Lactation failure in Src knockout mice is due to impaired secretory activation, BMC Dev. Biol., 8, 1–22, doi: 10.1186/1471-213X-8-6.

43. Zhang, F., Zhang, Q., Tengholm, A., Zhang, Q., Tengholm, A., Zhang, Q., and Larsson, O. (2006) Involvement of JAK2 and Src kinase tyrosine phosphorylation in human growth hormone-stimulated increases in cytosolic free Ca2+ and insulin secretion, Am. J. Physiol. Cell Physiol., 291, 466–475, doi: 10.1152/ajpcell.00418.2005.

44. Berlanga, J.J., Angel, J., Varat, F., Martin-Pbrez, J., Garcia-ruiz, J. P., and Dupezier, A. (1995) Prolactin receptor is associated with C-WC kinase in rat liver, Mol. Endocrinol., 9, 1461–1467.

45. Domíninguez-Caceres, M.A., Garcia-Martinez, M., Calcabrini, A., Gonzalez, L., Gonzalez, P., Leon, J., and Martin-Perez, J. (2004) Prolactin induces c-Myc expression and cell survival through activation of Src/Akt pathway in lymphoid cells, Oncogene, 23, 7378–7390, doi: 10.1038/sj.onc.1208002.

46. Halperin, J., Devi, S., Elizur, S., Stocco, C., Shehu, A., Rebourcet, D., Unterman, T.G., Leslie, N.D., Binart, N., and Gibori, G. (2008) Prolactin signaling through the short form of its receptor represses forkhead transcription factor FOXO3 and its target gene galt causing a severe ovarian defect, Mol. Endocrinol., 22, 513–522, doi: 10.1210/me.2007-0399.

47. Devi, Y.S., Shehu, A., Stocco, C., Halperin, J., Le, J., Seibold, A.M., Lahav, M., Binart, N., and Gibori, G. (2009) Regulation of transcription factors and repression of Sp1 by prolactin signaling through the short isoform of its cognate receptor, Endocrinology, 150, 3327–3335, doi: 10.1210/en.2008-1719.

48. Binart, N., Bachelot, A., and Bouilly, J. (2010) Impact of prolactin receptor isoforms on reproduction, Trends Endocrinol. Metab., 21, 362–368, doi: 10.1016/j.tem.2010.01.008.

49. Tan, D., Tang, P., Huang, J., Zhang, J., Zhou, W., and Walker, A.M. (2014) Expression of a constitutively active prolactin receptor causes histone trimethylation of the p53 gene in breast cancer, Chin. Med. J., 127, 1077–1083.

50. Tan, D.-Y., Tan, S., Zhang, J., Tang, P., Huang, J., Zhou, W., and Wu, S. (2013)Histone trimethylation of the p53 gene by expression of a constitutively active prolactin receptor in prostate cancer cells, Chin. J. Physiol., 56, 282–290, doi: 10.4077/CJP.2013.BAB139.

51. Tan, D., Huang, K. T., Ueda, E., and Walker, A.M. (2008) S2 deletion variants of human PRL receptors demonstrate that extracellular domain conformation can alter conformation of the intracellular signaling domain, Biochemistry, 47, 479–489, doi: 10.1021/bi7013882.

52. Reich, N.C. (2013) STATs get their move on, JAK-STAT, 2, e27080-1– e24860-9.

53. Sehgal, P.B. (2013) Non-genomic STAT5-dependent effects at the endoplasmic reticulum and Golgi apparatus and STAT6-GFP in mitochondria, JAK-STAT, 2, e24860-1–e24860-9.

54. Yang, X., and Friedl, A.A. (2015) Positive feedback loop between prolactin and STAT5 promotes angiogenesis, Springer Int. Publ., 265–280, doi: 10.1007/978-3-319-12114-7.

55. Copeland, N.G., Gilbert, D.J., Schindler, C., Zhong, Z., Wen, Z., Darnell, J.E., and Ihle, J.N. (1995) Distribution of the mammalian STAT gene family in mouse chromosomes, Genomics, 29, 225–228, doi: 10.1006/geno.1995.1235.

56. Hennighausen, L., and Robinson, G.W. (2008) Interpretation of cytokine signaling through the transcription factors, Genes Dev., 22, 711–721, doi: 10.1101/gad.1643908.GENES.

57. Ormandy, C.J., Camus, A., Barra, J., Damotte, D., Lucas, B., Buteau, H., and Kelly, P.A. (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse, Genes Dev., 11, 167–78.

58. Liu, X., Robinson, G.W., Wagner, K.U., Garrett, L., Wynshaw-Boris, A., and Hennighausen, L. (1997) STAT5a is mandatory for adult mammary gland development and lactogenesis, Genes Dev., 11, 179–186, doi: 10.1101/gad.11.2.179.

59. Matsumoto, A., Seki, Y., Kubo, M., Ohtsuka, S., Suzuki, A., Hayashi, I., and Yoshimura, A. (1999) Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice, Mol. Cell. Biol., 19, 6396–6407, doi: 10.1128/MCB.19.9.6396.

60. Endo, T., Sasaki, A., Minoguchi, M., Joo, A., and Yoshimura, A. (2003) CIS1 interacts with the Y532 of the prolactin receptor and supresses prolactin-dependent STAT5 activation, J. Biochem., 133, 109–113.

61. Smirnov, A.N. (2009) Hormonal mechanisms of sex differentiation of the liver: the modern concepts and problems, Ontogenez, 40, 334–54.

62. Teglund, S., McKay, C., Schuetz, E., Van Deursen, J.M., Stravopodis, D., Wang, D., and Ihle, J.N. (1998) STAT5a and STAT5b proteins have essential and nonessential, or redundant, roles in cytokine responses, Cell, 93, 841–850, doi: 10.1016/S0092-8674(00)81444-0.

63. Bridgewater, R.E., Streuli, C.H., and Caswell, P.T. (2017) Extracellular matrix promotes clathrin-dependent endocytosis of prolactin and STAT5 activation in differentiating mammary epithelial cells, Sci. Rep., 7, 1–10, doi: 10.1038/s41598-017-04783-6.

64. Grattan, D.R., Xu, J., McLachlan, M.J., Kokay, I.C., Bunn, S.J., Hovey, R.C., and Davey, H.W. (2001) Feedback regulation of PRL secretion is mediated by the transcription factor, signal transducer, and activator of transcription STAT5b, Endocrinology, 142, 3935–3940, doi: 10.1210/en.142.9.3935.

65. Yip, S.H., Eguchi, R., Grattan, D.R., and Bunn, S.J. (2012) Prolactin signalling in the mouse hypothalamus is primarily mediated by signal transducer and activator of transcription factor 5b but not 5a, J. Neuroendocrinol., 24, 1484–1491, doi: 10.1111/j.1365-2826.2012.02357.x.

66. Hosaka, T., Biggs, W.H., Tieu, D., Boyer, A.D., Varki, N.M., Cavenee, W.K., and Arden, K.C. (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification, Proc. Nat. Acad. Sci. USA, 101, 2975–2980, doi: 10.1073/pnas.0400093101.

67. Bachelot, A., Bouilly, J., Liu, Y., Rebourcet, D., Leux, C., Kuttenn, F., and Binart, N. (2010) Sequence variation analysis of the prolactin receptor C-terminal region in women with premature ovarian failure, Fertil. Steril., 94, 2772–2775, doi: 10.1016/j.fertnstert.2010.06.040.

68. Forges, T., Monnier-Barbarino, P., Leheup, B., and Jouvet, P. (2006) Pathophysiology of impaired ovarian function in galactosaemia, Hum. Reprod. Update, 12, 573–584, doi: 10.1093/humupd/dml031.

69. Krebs, D.L., and Hilton, D.J. (2001) SOCS proteins: negative regulators of cytokine signaling, Stem Cells, 19, 378–387.

70. Yoshimura, A., Naka, T., and Kubo, M. (2007) SOCS proteins, cytokine signalling and immune regulation, Nat. Rev. Immunol., 7, 454–465, doi: 10.1038/nri2093.

71. Jensik, P.J., and Arbogast, L.A. (2015) Regulation of cytokine-inducible SH2-containing protein (CIS) by ubiquitination and elongin B/C interaction, Mol. Cell. Endocrinol., 5, 130–141, doi: 10.1126/scisignal.274pe36.Insulin.

72. Starr, R., Willson, T.A, Viney, E.M., Murray, L.J., Rayner, J.R., Jenkins, B.J., and Hilton, D.J. (1997) A family of cytokine-inducible inhibitors of signalling, Nature, 387, 917–921, doi: 10.1038/43206.

73. Dif, F., Saunier, E., Demeneix, B., Kelly, P.A., and Edery, M. (2001) Cytokine-inducible SH2-containing protein suppresses PRL signaling by binding the PRL receptor, Endocrine Rev., 142, 5286–5293.

74. Tonko-Geymayer, S., Goupille, O., Tonko, M., Soratroi, C., Yoshimura, A., Streuli, C., and Doppler, W. (2002) Regulation and function of the cytokine-inducible SH-2 domain proteins, CIS and SOCS3, in mammary epithelial cells, Mol. Endocrinol., 16, 1680–1695.

75. Helman, D., Sandowski, Y., Cohen, Y., Matsumoto, A., Yoshimura, A., Merchav, S., and Gertler, A. (1998) Cytokine-inducible SH2 protein (CIS3) and JAK2 binding protein (JAB) abolish prolactin receptor-mediated STAT5 signaling, FEBS Lett., 441, 287–291, doi: 10.1016/S0014-5793(98)01555-5.

76. Anderson, S.T., Barclay, J.L., Fanning, K.J., Kusters, D.H.L., Waters, M.J., and Curlewis, J.D. (2006) Mechanisms underlying the diminished sensitivity to prolactin negative feedback during lactation: reduced STAT5 signaling and up-regulation of cytokine-inducible SH2 domain-containing protein (CIS) expression in tuberoinfundibular dopaminergic neurons, Endocrinology, 147, 1195–1202, doi: 10.1210/en.2005-0905.

77. Anderson, S.T., Isa, N.N.M., Barclay, J.L., Waters, M.J., and Curlewis, J.D. (2009) Maximal expression of suppressors of cytokine signaling in the rat ovary occurs in late pregnancy, Reproduction, 138, 537–544, doi: 10.1530/REP-08-0425.

78. Pezet, A., Favre, H., Kelly, P.A., and Edery, M. (1999) Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling, J. Biol. Chem., 274, 24497–24502, doi: 10.1074/jbc.274.35.24497.

79. Tomic, S., Chughtai, N., and Ali, S. (1999) SOCS-1, -2, -3: Selective targets and functions downstream of the prolactin receptor, Mol. Cell. Endocrinol., 158, 45–54, doi: 10.1016/S0303-7207(99)00180-X.

80. Sutherland, K.D., Lindeman, G.J., and Visvader, J.E. (2007) Knocking off SOCS genes in the mammary gland, Cell. Cycle, 6, 799–803, doi: 10.4161/cc.6.7.4037

81. Maruoka, M., Kedashiro, S., Ueda, Y., Mizutani, K., and Takai, Y. (2017) Nectin-4 co-stimulates the prolactin receptor by interacting with SOCS1 and inhibiting its activity on the JAK2-STAT5a signaling pathway, J. Biol. Chem., 292, 6895–6909, doi: 10.1074/jbc.M116.769091.

82. Harris, J., Stanford, P.M., Sutherland, K., Oakes, S.R., Naylor, M.J., Robertson, F.G., and Ormandy, C.J. (2006) Socs2 and elf5 mediate prolactin-induced mammary gland development, Mol. Endocrinol., 20, 1177–1187, doi: 10.1210/me.2005-0473.

83. Shuai, K., and Liu, B. (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system, Nat. Rev. Immunol., 5, 593–605, doi: 10.1038/nri1667.

84. Shuai, K. (2006) Regulation of cytokine signaling pathways by PIAS proteins, Cell Res., 16, 196–202, doi: 10.1038/sj.cr.7310027.

85. Schmidt, D., and Muller, S. (2003) PIAS/SUMO: New partners in transcriptional regulation, Cell. Mol. Life Sci., 60, 2561–2574, doi: 10.1007/s00018-003-3129-1.

86. McHale, K., Tomaszewski, J. E., Puthiyaveettil, R., Livolsi, V.A., and Clevenger, C.V. (2008) Altered expression of prolactin receptor-associated signaling proteins in human breast carcinoma, Modern Pathol., 21, 565–571, doi: 10.1038/modpathol.2008.7.

87. Dagvadorj, A., Tan, S. H., Liao, Z., Xie, J., Nurmi, M., Alanen, K., and Nevalainen, M.T. (2010) N-terminal truncation of STAT5a/b circumvents PIAS3-mediated transcriptional inhibition of STAT5 in prostate cancer cells, Intern. J. Biochem. Cell Biol., 42, 2037–2046, doi: 10.1016/j.biocel.2010.09.008.

88. Jones, M.C., Fusi, L., Higham, J.H., Abdel-Hafiz, H., Horwitz, K.B., Lam, E.W.-F., and Brosens, J.J. (2006) Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone, Proc. Nat. Acad. Sci. USA, 103, 16272–16277, doi: 10.1073/pnas.0603002103.

89. Aleksandrova, M.I., Sirotina, N.S., and Smirnova, O.V. (2015) Possible recovery of manifestation of prolactin receptor and some of its target proteins in the liver and kidney cells of female rats after relief of cholestasis complicated and not complicated by hyperprolactinemia, Bull. Exp. Biol. Med., 159, 361–364, doi: 10.1007/s10517-015-2963-0.

90. Aleksandrova, M.I., Kushnareva, N.S., and Smirnova, O.V. (2012) Prolactine receptor expression in kidney tissue of female rats with cholestasis: the effect of hyperprolactinemia, Bull. Exp. Biol. Med., 153, 448–451.

91. Bogorad, R.L., Ostroukhova, T.Y., Orlova, A.N., Rubtsov, P.M., and Smirnova, O.V. (2006) Long isoform of prolactin receptor predominates in rat intrahepatic bile ducts and further increases under obstructive cholestasis, J. Endocrinol., 188, 345–354, doi: 10.1677/joe.1.06468.

92. Bogorad, R.L., Ostroukhova, T.Y., Orlova, A.N., Rubtsov, P.M., and Smirnova, O.V. (2006) Prolactin receptors in rat cholangiocytes: regulation of level and isoform ratio is sex independent, Biochemistry (Moscow), 71, 178–184, doi: 10.1134/S0006297906020106.

93. Ouhtit, A., Morel, G., and Kelly, P.A. (1993) Visualization of gene expression of short and long forms of prolactin receptor in the rat, Endocrinology, 133, 135–144, doi: 10.1210/endo.133.1.8319561.

94. Nagano, M., and Kelly, P.A. (1994) Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction, J. Biol. Chem., 269, 13337–13345.

95. Gerhold, D., Bagchi, A., Lu, M., Figueroa, D., Keenan, K., Holder, D., and Alonso-Galicia, M. (2007) Androgens drive divergent responses to salt stress in male versus female rat kidneys, Genomics, 89, 731–744, doi: 10.1016/j.ygeno.2007.01.009.

96. Gorvin, C.M. (2015) The prolactin receptor: diverse and emerging roles in pathophysiology, J. Clin. Transl. Endocrinol., 2, 85–91, doi: 10.1016/J.JCTE.2015.05.001.

97. Newey, P.J., Gorvin, C.M., Cleland, S.J., Willberg, C.B., Bridge, M., Azharuddin, M., and Thakker, R.V. (2013) Mutant prolactin receptor and familial hyperprolactinemia, New Engl. J. Med., 1–9, doi: 10.1056/NEJMoa1307557.

98. Grosdemouge, I., Bachelot, A., Lucas, A., Baran, N., Kelly, P.A., and Binart, N. (2003) Effects of deletion of the prolactin receptor on ovarian gene expression, Reprod. Biol. Endocrinol., 1, 1–16, doi: 10.1186/1477-7827-1-12.

99. Tan, D., Chen, K.H.E., Khoo, T., and Walker, A.M. (2011) Prolactin increases survival and migration of ovarian cancer cells: Importance of prolactin receptor type and therapeutic potential of S179D and G129R receptor antagonists, Cancer Lett., 310, 101–108, doi: 10.1016/j.canlet.2011.06.014.

100. Ueda, E.K., Huang, K., Nguyen, V., Ferreira, M., Andre, S., and Walker, A.M. (2011) Distribution of prolactin receptors suggests an intraductal role for prolactin in the mouse and human mammary gland, a finding supported by analysis of signaling in polarized monolayer cultures, Cell Tissue Res., 346, 175–189, doi: 10.1007/s00441-011-1253-z.

101. Smirnova, O.V., and Bogorad, R.L. (2004) Short forms of membrane receptors: generation and role in hormonal signal transduction, Biochemistry (Moscow), 69, 351–363.

102. Gill, S., Peston, D., Vonderhaar, B.K., and Shousha, S. (2001) Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study, J. Clin. Pathol., 54, 956–960.

103. Laud, K., Gourdou, I., Belair, L., Peyrat, J.P., and Djiane, J. (2000) Characterization and modulation of a prolactin receptor mRNA isoform in normal and tumoral human breast tissues, Inter. J. Cancer, 85, 771–776.

104. Touraine, P., Martini, J.F., Zafrani, B., Durand, J.C., Labaille, F., Malet, C., and Kelly, P.A. (1998) Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues, J. Clin. Endocrinol. Metab., 83, 667–674, doi: 10.1210/jcem.83.2.4564.

105. Tan, D., Johnson, D.A., Wu, W., Zeng, L., Chen, Y.H., Chen, W.Y., and Walker, A.M. (2005) Unmodified prolactin (PRL) and S179D PRL-initiated bioluminescence resonance energy transfer between homo- and hetero-pairs of long and short human PRL receptors in living human cells, Mol. Endocrinol., 19, 1291–303, doi: 10.1210/me.2004-0304.

106. Meng, J., Chon-Hwa, T.-M., and Dufau, M.L. (2004) Human prolactin receptor variants in breast cancer: low ratio of short forms to the long-form human prolactin receptor associated with mammary carcinoma, Cancer Res., 64, 5677–5682.

107. Oakes, S.R., Robertson, F.G., Kench, J.G., Gardiner-Garden, M., Wand, M.P., Green, J.E., and Ormandy, C.J. (2007) Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions, Oncogene, 26, 543–553, doi: 10.1038/sj.onc.1209838.

108. Morammazi, S., Masoudi, A., Torshizi, R.V., and Pakdel, A. (2016) Changes in the expression of the prolactin receptor (PRLR) gene in different physiological stages in the mammary gland of the iranian adani goat, Reprod. Dom. Anim., 51, 585–590, doi: 10.1111/rda.12723.

109. Rojas-Duran, F., Pascual-Mathey, L.I., Serrano, K., Aranda-Abreu, G.E., Manzo, J., Soto-Cid, A.H., and Hernandez, M.E. (2015) Correlation of prolactin levels and PRL-receptor expression with STAT and MAPK cell signaling in the prostate of long-term sexually active rats, Physiol. Behav., 138, 188–192, doi: 10.1016/j.physbeh.2014.10.036.

110. Doherty, P.C., Wu, D.E., and Matt, K.S. (1990) Hyperprolactinemia preferentially inhibits erectile function in adrenalectomized male rats, Life Sci., 47, 141–148.

111. Rehman, J., Christ, G., Alyskewycz, M., Kerr, E., and Melman, A. (2000) Experimental hyperprolactinemia in a rat model: alteration in centrally mediated neuroerectile mechanisms, Inter. J. Impot. Res., 12, 23–32.

112. Wagner, K.U., and Rui, H. (2008) JAK2/STAT5 signaling in mammogenesis, breast cancer initiation and progression, J. Mammary Gland Biol. Neoplasia, 13, 93–103, doi: 10.1007/s10911-008-9062-z.

113. Ascencio-Cedillo, R., Lopez-Pulido, E.I., Munoz-Valle, J.F., Villegas-Sepulveda, N., Del Toro-Arreola, S., Estrada-Chavez, C., and Pereira-Suarez, A.L. (2015) Prolactin and prolactin receptor expression in cervical intraepithelial neoplasia and cancer, Pathol. Oncol. Res., 21, 241–246, doi: 10.1007/s12253-014-9814-6.

114. Lopez-Pulido, E.I., Munoz-Valle, J.F., Del Toro-Arreola, S., Jave-Suarez, L.F., Bueno-Topete, M.R., Estrada-Chavez, C., and Pereira-Suarez, A.L. (2013) High expression of prolactin receptor is associated with cell survival in cervical cancer cells, Cancer Cell. Intern., 13, 103–112, doi: 10.1186/1475-2867-13-103.

115. Amaral, V.C., Maciel, G.A.R., Carvalho, K.C., Marcondes, R.R., Soares, J.M., and Baracat, E.C. (2013) Metoclopramide-induced hyperprolactinemia effects on the pituitary and uterine prolactin receptor expression, Gen. Comp. Endocrinol., 189, 105–110, doi: 10.1016/j.ygcen.2013.04.037.

116. Lupicka, M., Socha, B.M., Szczepanska, A.A., and Korzekwa, A.J. (2017) Prolactin role in the bovine uterus during adenomyosis, Dom. Anim. Endocrin., 58, 1–13, doi: 10.1016/j. domaniend.2016.07.003.

117. Trott, J.F., Horigan, K.C., Gloviczki, J.M., Costa, K.M., Freking, B.A., Farmer, C., and Hovey, R.C. (2009) Tissue-specific regulation of porcine prolactin receptor expression by estrogen, progesterone, and prolactin, J. Endocrinol., 202, 153–166, doi: 10.1677/JOE-08-0486.

118. Moreno-Carranza, B., Goya-Arce, M., Vega, C., Adan, N., Triebel, J., Lopez-Barrera, F., and Clapp, C. (2013) Prolactin promotes normal liver growth, survival, and regeneration in rodents: effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis, Am. J. Physiol. Regul. Integ. Comp. Physiol., 305, 720–726, doi: 10.1152/ajpregu.00282.2013.

119. Bogorad, R.L., Smyslova, V.S., Smirnov, A.N., Rubtsov, P.M., and Smirnova, O.V. (2002) The ratio of prolactin receptor isoforms in rat hepatocytes: the effect of obstructive cholestasis, Mol. Biol., 36, 91–93.

120. Orlova, A.N., Smirnov, A.N., and Smirnova, O.V. (1999) The role of prolactin in the functional regulation of liver cells after the common bile duct ligation, Biull. Eksperim. Biol. Med., 127, 573–575.

121. Smirnova, O.V, Petrashchuk, O.M., and Smirnov, A.N. (1998) Induction of expression of prolactin receptors in cholangiocytes of male and female rats after ligation of the common bile duct, Biull. Eksper. Biol. Med., 125, 66–70.

122. Hartwell, H.J., Petrosky, K.Y., Fox, J.G., Horseman, N.D., and Rogers, A.B. (2014) Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice, Proc. Nat. Acad. Sci. USA, 111, 11455–11460, doi: 10.1073/pnas.1404267111.

123. Fidchenko, Y.M., Kushnareva, N.S., and Smirnova, O.V. (2014) Effect of prolactin on the water-salt balance in rat females in the model of cholestasis of pregnancy, Bull. Exper. Biol. Med., 156, 803–806.

124. Tsuchida, Y., Kaneko, Y., Otsuka, T., Goto, K., Saito, A., Yamamoto, K., and Narita, I. (2013) Upregulation of prolactin receptor in proximal tubular cells was induced in cardiac dysfunction model mice, Clin. Exp. Nephrol., 18, 65–74, doi: 10.1007/s10157-013-0820-x.

125. Seriwatanachai, D., Thongchote, K., Charoenphandhu, N., Pandaranandaka, J., Tudpor, K., Teerapornpuntakit, J., and Krishnamra, N. (2008) Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor кB ligand/osteoprotegerin ratio, Bone, 42, 535–546, doi: 10.1016/j.bone. 2007.11.008.

126. Goffin, V., and Touraine, P. (2015) The prolactin receptor as a therapeutic target in human diseases: browsing new potential indications, Exp. Opinion Ther. Targ., 19, 1229–1244, doi: 10.1517/14728222.2015.1053209.

127. Goffin, V., Tallet, E., Jomain, J.-B., and Kelly, P. (2007) Development of prolactin receptor antagonists: same goal, different ways, Recent Pat. Endocr. Metab. Imm. Drug Discov., 1, 41–52, doi: 10.2174/187221407779814552.

128. Goffin, V., Kinet, S., Ferrag, F., Binart, N., Martial, J.A., and Kelly, P.A. (1996) Antagonistic properties of human prolactin analogs that show paradoxical agonistic activity in the Nb2 bioassay, J. Biol. Chem., 271, 16573–16579.

129. Wen, Y., Zand, B., Ozpolat, B., Szczepanski, M.J., Lu, C., Yuca, E., and Sood, A.K. (2014) Antagonism of tumoral prolactin receptor promotes autophagy-related cell death, Cell Rep., 7, 488–500, doi: 10.1016/j.celrep.2014.03.009.

130. Scotti, M.L., Langenheim, J.F., Tomblyn, S., Springs, A.E.B., and Chen, W.Y. (2008) Additive effects of a prolactin receptor antagonist, G129R, and herceptin on inhibition of HER2-overexpressing breast cancer cells, Breast Cancer Res. Treat., 111, 241–250, doi: 10.1007/s10549-007-9789-z.

131. Agarwal, N., Machiels, J.-P., Suarez, C., Lewis, N., Higgins, M., Wisinski, K., and Elmeliegy, M. (2016) Phase I study of the prolactin receptor antagonist LFA102 in metastatic breast and castration-resistant prostate cancer, Oncologist, 21, 535–536, doi: 10.1634/theoncologist.2015-0502.

132. Thomas, L.N., Merrimen, J., Bell, D.G., Rendon, R., Goffin, V., and Too, C.K.L. (2014) Carboxypeptidase-D is elevated in prostate cancer and its anti-apoptotic activity is abolished by combined androgen and prolactin receptor targeting, Prostate, 74, 732–742, doi: 10.1002/pros.22793.