БИОХИМИЯ, 2019, том 84, вып. 3, с. 343–353
УДК 611.018.2
Внеклеточный матрикс в регуляции дифференцировки стволовых клеток
Обзор
1 Институт регенеративной медицины, Медицинский научно-образовательный центр, Московский государственный университет им. М.В. Ломоносова, 119991 Москва, Россия; электронная почта: efimenkoan@gmail.com
2 Московский государственный университет им. М.В. Ломоносова, факультет фундаментальной медицины, 119991 Москва, Россия
Поступила в редакцию 09.11.2018
После доработки 06.12.2018
Принята к публикации 06.12.2018
DOI: 10.1134/S0320972519030059
КЛЮЧЕВЫЕ СЛОВА: внеклеточный матрикс, стволовые клетки, дифференцировка, ниша стволовой клетки, внеклеточные везикулы, децеллюляризация.
Аннотация
Белки внеклеточного матрикса (ВКМ) заполняют пространство между клетками в многоклеточных организмах, создавая структуру органов и тканей. Механические свойства ВКМ хорошо изучены. В настоящее время интенсивно исследуется роль отдельных компонентов ВКМ и трехмерных тканеспецифичных матриксов в регуляции функциональной активности клеток, их пролиферации, миграции, приобретении специализированного фенотипа и его поддержании. В данном обзоре рассмотрены основные структурные белки, ферменты и внеклеточные везикулы, входящие в состав ВКМ; приведены данные об участии компонентов ВКМ в регуляции дифференцировки и самоподдержания стволовых клеток; рассмотрены подходы к моделированию микроокружения стволовых клеток с помощью децеллюляризированного ВКМ.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при поддержке РНФ (грант № 14-15-00439; исследование роли внеклеточных везикул и взаимодействия ВКМ с МСК) и Минобрнауки России (грант № MK-2422.2017.7; использование децеллюляризации для изучения роли ВКМ).
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Список литературы
1. Rozario, T., and DeSimone, D.W. (2010) The extracellular matrix in development and morphogenesis: a dynamic view, Dev. Biol., 341, 126–140, doi: 10.1016/j.ydbio.2009.10.026.
2. Chen, F.M., and Liu, X. (2016) Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci., 53, 86–168, doi: 10.1016/j.progpolymsci.2015.02.004.
3. Yi, S., Ding, F., Gong, L., and Gu, X. (2017) Extracellular matrix scaffolds for tissue engineering and regenerative medicine, Curr. Stem Cell Res. Ther., 12, 233–246, doi: 10.2174/1574888X11666160905092513.
4. Egeblad, M., Rasch, M.G., and Weaver, V.M. (2010) Dynamic interplay between the collagen scaffold and tumor evolution, Curr. Opin. Cell Biol., 22, 697–706, doi:10.1016/j.ceb.2010.08.015.
5. Yurchenco, P.D. (2011) Basement membranes: cell scaffoldings and signaling platforms, Cold Spring Harb. Perspect Biol., 3, a004911, doi: 10.1101/cshperspect.a004911.
6. Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., and Hynes, R.O. (2016) The extracellular matrix: tools and insights for the «omics» era, Matrix Biol., 49, 10–24, doi: 10.1016/ j.matbio.2015.06.003.
7. Gattazzo, F., Urciuolo, A., and Bonaldo, P. (2014) Extracellular matrix: a dynamic microenvironment for stem cell niche, Biochim. Biophys. Acta, 1840, 2506–2519, doi: 10.1016/j.bbagen.2014.01.010.
8. Ragelle, H., Naba, A., Larson, B.L., Zhou, F., Prijic, M., Whittaker, C.A., Rosarioa, A.D., Langer, R., Hynes, R.O., and Anderson, D.G. (2017) Comprehensive proteomic characterization of stem cell-derived extracellular matrices, Biomaterials, 128, 147–159, doi: 10.1016/j.biomaterials.2017.03.008.
9. Anderson, H.C. (1967) Electron microscopic studies of induced cartilage development and calcification, J. Cell Biol., 35, 81–101, doi: 10.1083/jcb.35.1.81.
10. Bonucci, E. (1967) Fine structure of early cartilage calcification, J. Ultrastruct. Res., 20, 33–50, doi: 10.1016/S0022-5320(67)80034-0.
11. Yanez-Mo, M., Siljander, P.R.M., Andreu, Z., Bedina Zavec, A., Borras, F.E., Buzas, E.I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colas, E., Cordeiro-da Silva, A., Fais, S., Falcon-Perez, J.M., Ghobrial, I.M., Giebel, B., Gimona, M., Graner, M., Gursel, I., Gursel, M., Heegaard, N.H.H., Hendrix, A., Kierulf, P., Kokubun, K., Kosanovic, M., Kralj-Iglic, V., Kramer-Albers, E.-M., Laitinen, S., Lasser, C., Lener, T., Ligeti, E., Line, A., Lipps, G., Llorente, A., Lotvall, J., Mancek-Keber, M., Marcilla, A., Mittelbrunn, M., Nazarenko, I., Nolte-‘t Hoen, E.N.M., Nyman, T.A., O’Driscoll, L., Olivan, M., Oliveira, C., Pallinger, E., del Portillo, H.A., Reventos, J., Rigau, M., Rohde, E., Sammar, M., Sanchez-Madrid, F., Santarem, N., Schallmoser, K., Ostenfeld, M.S., Stoorvogel, W., Stukelj, R., van der Grein, S.G., Vasconcelos, M.H., Wauben, M.H.M., and Colas, E. (2015) Biological properties of extracellular vesicles and their physiological functions, J. Extracell. Vesicles, 4, 27066, doi: 10.3402/jev.v4.27066.
12. Kapustin, A., Davies, J.D., Reynolds, J.L., McNair, R., Jones, G.T., Sidibe, A., Schurgers, L.J., Skepper, J.N., Proudfoot, D., Mayr, M., and Shanahan, C.M. (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization, Circ. Res., 109, e1–e12, doi: 10.1161/CIRCRESAHA.110.238808.
13. Wang, X., Omar, O., Vazirisani, F., Thomsen, P., and Ekstrom, K. (2018) Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation, PLoS One, 13, e0193059, doi: 10.1371/journal.pone.0193059.
14. Nawaz, M., Shah, N., Zanetti, B., Maugeri, M., Silvestre, R., Fatima, F., Neder, L., and Valadi, H. (2018) Extracellular vesicles and matrix remodeling enzymes: the emerging roles in extracellular matrix remodeling, progression of diseases and tissue repair, Cells, 7, 167, doi: 10.3390/cells7100167.
15. Schofield, R. (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell, Blood Cells, 4, 7–25.
16. Mashinchian, O., Pisconti, A., Le Moal, E., and Bentzinger, C.F. (2018) The muscle stem cell niche in health and disease, Curr. Top. Dev. Biol., 126, 23–65, doi: 10.1016/bs.ctdb.2017.08.003.
17. Spit, M., Koo, B.K., and Maurice, M.M. (2018) Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer, Open Biol., 8, 180120, doi: 10.1098/rsob.180120.
18. Guo, P., Sun, H., Zhang, Y., Tighe, S., Chen, S., Su, C.W., Liu, Y., Zhao, H., Hu, M., and Zhu, Y. (2018) Limbal niche cells are a potent resource of adult mesenchymal progenitors, J. Cell Mol. Med., 22, 3315–3322, doi: 10.1111/jcmm.13635.
19. Matarredona, E.R., Talaveron, R., and Pastor, A.M. (2018) Interactions between neural progenitor cells and microglia in the subventricular zone: physiological implications in the neurogenic niche and after implantation in the injured brain, Front. Cell Neurosci., 12, 268, doi: 10.3389/fncel.2018.00268.
20. Нимирицкий П.П., Сагарадзе Г.Д., Ефименко А.Ю., Макаревич П.И., Ткачук В.А. (2018) Ниша стволовой клетки, Цитология, 60, 575–586, doi: 10.31116/tsitol.2018.08.01.
21. Donnelly, H., Salmeron-Sanchez, M., and Dalby, M.J. (2018) Designing stem cell niches for differentiation and self-renewal, J. R. Soc. Interface, 15, 20180388, doi: 10.1098/rsif.2018.0388.
22. Omelyanenko, N.P., and Karpov, I.N. (2017) Patterns of cell–matrix interactions during formation the distraction bone regenerates, Bull. Exp. Biol. Med., 163, 510–514, doi: 10.1007/s10517-017-3840-9.
23. Muncie, J.M., and Weaver, V.M. (2018) The physical and biochemical properties of the extracellular matrix regulate cell fate, Curr. Top. Dev. Biol., 130, 1–37, doi: 10.1016/bs.ctdb.2018.02.002.
24. Chermnykh, E., Kalabusheva, E., and Vorotelyak, E. (2018) Extracellular matrix as a regulator of epidermal stem cell fate, Int. J. Mol. Sci., 19, 1003, doi: 10.3390/ijms19041003.
25. Agmon, G., and Christman, K.L. (2016) Controlling stem cell behavior with decellularized extracellular matrix scaffolds, Curr. Opin. Solid. State Mater. Sci., 20, 193–201, doi: 10.1016/j.cossms.2016.02.001.
26. Mendez-Ferrer, S., Michurina, T.V., Ferraro, F., Mazloom, A.R., MacArthur, B.D., Lira, S.A., Scadden, D.T., Ma’ayan, A., Enikolopov, G.N., and Frenette, P.S. (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature, 466, 829–834, doi: 10.1038/nature09262.
27. Kfoury, Y., and Scadden, D.T. (2015) Mesenchymal cell contributions to the stem cell niche, Cell Stem Cell, 16, 239–253, doi: 10.1016/j.stem.2015.02.019.
28. Humphries, J.D., Byron, A., and Humphries, M.J. (2006) Integrin ligands at a glance, J. Cell Sci., 119, 3901–3903, doi: 10.1242/jcs.03098.
29. Geiger, T., and Zaidel-Bar, R. (2012) Opening the floodgates: proteomics and the integrin adhesome, Curr. Opin. Cell Biol., 24, 562–568, doi: 10.1016/j.ceb.2012.05.004.
30. Zhou, Z., Qu, J., He, L., Peng, H., Chen, P., and Zhou, Y. (2018) α6-Integrin alternative splicing: distinct cytoplasmic variants in stem cell fate specification and niche interaction, Stem Cell Res. Ther., 9, 122, doi: 10.1186/s13287-018-0868-3.
31. Fujiwara, H., Ferreira, M., Donati, G., Marciano, D.K., Linton, J.M., Sato, Y., Hartner, A., Sekiguchi, K., Reichardt, L.F., and Watt, F.M. (2011) The basement membrane of hair follicle stem cells is a muscle cell niche, Cell, 144, 577–589, doi: 10.1016/j.cell.2011.01.014.
32. Yamada, T., Hasegawa, S., Miyachi, K., Date, Y., Inoue, Y., Yagami, A., Arima, M., Iwata, Y., Yamamoto, N., Nakata, S., Matsunaga, K., Sugiura, K., and Akamatsu, H. (2018) Laminin-332 regulates differentiation of human interfollicular epidermal stem cells, Mech. Ageing Dev., 171, 37–46, doi: 10.1016/j.mad.2018.03.007.
33. Elbediwy, A., Vincent-Mistiaen, Z.I., and Thompson, B.J. (2016) YAP and TAZ in epithelial stem cells: a sensor for cell polarity, mechanical forces and tissue damage, Bioessays, 38, 644–653, doi: 10.1002/bies.201600037.
34. Kuang, S., Kuroda, K., Le Grand, F., and Rudnicki, M.A. (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle, Cell, 129, 999–1010, doi: 10.1016/j.cell.2007.03.044.
35. Desgrosellier, S., Lesperance, J., Seguin, L., Gozo, M., Kato, S., Franovic, A., Yebra, M., Shattil, S.J., and Cheresh, D.A. (2014) Integrin αvβ3 drives Slug activation and stemness in the pregnant and neoplastic mammary gland, Dev. Cell, 30, 295–308, doi: 10.1016/j.devcel.2014.06.005.
36. Barros, C.S., Franco, S.J., and Muller, U. (2011) Extracellular matrix: functions in the nervous system, Cold Spring Harb. Perspect. Biol., 3, a005108, doi: 10.1101/csh-perspect.a005108.
37. Gu, Y., Zhu, J., Xue, C., Li, Z., Ding, F., Yang, Y., and Gu, X. (2014) Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps, Biomaterials, 35, 2253–2263, doi: 10.1016/j.biomaterials.2013.11.087.
38. Saghatelyan, A., De Chevigny, A., Schachner, M., and Lledo, P.M. (2004) Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain, Nat. Neurosci., 7, 347, doi: 10.1038/nn1211.
39. Gilbert, P.M., Havenstrite, K.L., Magnusson, K.E.G., Sacco, A., Leonardi, N.A., Kraft, P., Nguyen, N.K., Thrun, S., Lutolf, M.P., and Blau, H.M. (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture, Science, 329, 1078–1081, doi: 10.1126/science. 1191035.
40. Swift, J., Ivanovska, I.L., Buxboim, A., Harada, T., Dingal, P.D.P., Pinter, J., Pajerowski, J.D., Spinler, K.R., Shin, J.-W., Tewari, M., Rehfeldt, F., Speicher, D.W., and Rehfeldt, F. (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation, Science, 341, 1240104, doi: 10.1126/science.1240104.
41. Meran, L., Baulies, A., and Li, V.S. (2017) Intestinal stem cell niche: the extracellular matrix and cellular components, Stem Cells Int., 2017, 7970385, doi: 10.1155/2017/7970385.
42. Mamidi, A., Prawiro, C., Seymour, P.A., de Lichtenberg, K.H., Jackson, A., Serup, P., and Semb, H. (2018) Mechanosignalling via integrins directs fate decisions of pancreatic progenitors, Nature, 564, 114–118, doi: 10.1038/s41586-018-0762-2.
43. Brizzi, M.F., Tarone, G., and Defilippi, P. (2012) Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche, Curr. Opin. Cell Biol., 24, 645–651, doi: 10.1016/j.ceb.2012.07.001.
44. Ahmed, М., and French-Constant, C. (2016) Extracellular matrix regulation of stem cell behavior, Curr. Stem Cell Rep., 2, 197–206, doi: 10.1007/s40778-016-0056-2.
45. Sugawara, K., Tsuruta, D., Ishii, M., Jones, J.C., and Kobayashi, H. (2008) Laminin-332 and -511 in skin, Exp. Dermatol., 17, 473–480, doi: 10.1111/j.1600-0625.2008.00721.x.
46. Nowell, C.S., and Radtke, F. (2017) Corneal epithelial stem cells and their niche at a glance, J. Cell Sci., 130, 1021–1025, doi: 10.1242/jcs.198119.
47. Shapiro, I.M., Landis, W.J., and Risbud, M.V. (2015) Matrix vesicles: are they anchored exosomes? Bone, 79, 29–36, doi: 10.1016/j.bone.2015.05.013.
48. Narayanan, K., Kumar, S., Padmanabhan, P., Gulyas, B., Wan, A.C., and Rajendran, V.M. (2018) Lineage-specific exosomes could override extracellular matrix mediated human mesenchymal stem cell differentiation, Biomaterials, 182, 312–322, doi: 10.1016/j.biomaterials.2018.08.027.
49. Thomas, D., O’Brien, T., and Pandit, A. (2018) Toward customized extracellular niche engineering: progress in cell-entrapment technologies, Adv. Mat., 30, 1703948, doi: 10.1002/adma.201703948.
50. Klebe, R.J. (1974) Isolation of a collagen-dependent cell attachment factor, Nature, 250, 248–251, doi: 10.1038/250248a0.
51. Timpl, R., Rohde, H., Robey, P.G., Rennard, S.I., Foidart, J.M., and Martin, G.R. (1979) Laminin – a glycoprotein from basement membranes, J. Biol. Chem., 254, 9933–9937, doi: 114518.
52. Takebayashi, T., Horii, T., Denno, H., Nakamachi, N., Otomo, K., Kitamura, S., Miyamoto, K., Horiuchi, T., and Ohta, Y. (2013) Human mesenchymal stem cells differentiate to epithelial cells when cultured on thick collagen gel, Biomed. Mater. Eng., 23, 143–153, doi: 10.3233/BME-120739.
53. Sachenberg, E.I., Nikolaenko, N.N., and Pinaev, G.P. (2015) Spreading and actin cytoskeleton organization of cartilage and bone marrow stromal cells cocultured on various extracellular matrix proteins, Cell Tissue Biol., 9, 1–8, doi: 10.1134/S1990519X15010083.
54. Chen, X.D., Dusevich, V., Feng, J.Q., Manolagas, S.C., and Jilka, R.L. (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts, J. Bone Miner. Res., 22, 1943–1956, doi: 10.1359/jbmr.070725.
55. Lai, Y., Sun, Y., Skinner, C.M., Son, E.L., Lu, Z., Tuan, R.S., Jilka, R.L., Ling, J., and Chen, X.D. (2010) Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells, Stem Cells Dev., 19, 1095–1107, doi: 10.1089/scd.2009.0217.
56. Connelly, J.T., Gautrot, J.E., Trappmann, B., Tan, D.W.M., Donati, G., Huck, W.T., and Watt, F.M. (2010) Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions, Nat. Cell Biol., 12, 711, doi: 10.1038/ncb2074.
57. Chen, F.M., and Liu, X. (2016) Advancing biomaterials of human origin for tissue engineering, Prog. Polym. Sci., 53, 86–168, doi: 10.1016/j.progpolymsci.2015.02.004.
58. Wolchok, J.C., and Tresco, P.A. (2010) The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams, Biomaterials, 31, 9595–9603, doi: 10.1016/j.biomaterials.2010.08.072.
59. Costa-Almeida, R., Granja, P.L., Soares, R., and Guerreiro, S.G. (2014) Cellular strategies to promote vascularisation in tissue engineering applications, Eur. Cell Mater., 28, 51–57, doi: 10.22203/eCM.v028a05.
60. Lu, W.D., Zhang, L., Wu, C.L., Liu, Z.G., Lei, G.Y., Liu, J., Gao, W., and Hu, Y.R. (2014) Development of an acellular tumor extracellular matrix as a three-dimensional scaffold for tumor engineering, PLoS One, 9, e103672, doi: 10.1371/journal.pone.0103672.
61. Xing, Q., Yates, K., Tahtinen, M., Shearier, E., Qian, Z., and Zhao, F. (2014) Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation, Tissue Eng. Part C Methods., 21, 77–87, doi: 10.1089/ten.tec.2013.0666.
62. Cheng, C.W., Solorio, L.D., and Alsberg, E. (2014) Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering, Biotechnol. Adv., 32, 462–484, doi: 10.1016/j.biotechadv.2013.12.012.
63. Kalinina, N., Kharlampieva, D., Loguinova, M., Butenko, I., Pobeguts, O., Efimenko, A., Ageeva, L., Sharonov, G., Ischenko, D., Alekseev, D., Grigorieva, O., Sysoeva, V., Rubina, K., Lazarev, V., and Govorun, V. (2015) Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes, Stem Cell Res. Ther., 6, 221, doi: 10.1186/s13287-015-0209-8.
64. Konala, V.B.R., Mamidi, M.K., Bhonde, R., Das, A.K., Pochampally, R., and Pal, R. (2016) The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration, Cytotherapy, 18, 13–24, doi: 10.1016/j.jcyt.2015.10.008.
65. Kuznetsova, E.S., Nimiritsky, P.P., Grigorieva, O.A., Sagaradze, G.D., Rodionov, S.A., Omelyanenko, N.P., Makarevich, P.I., and Efimenko, A.Yu. (2018) Decellularized extracellular matrix of human mesenchymal stromal cells as a novel biomaterial for regenerative medicine, Human Gene Therapy, A75–A76, doi: 10.1089/hum.2018.29077.abstracts.
66. Shakouri-Motlagh, A., O’Connor, A.J., Brennecke, S.P., Kalionis, B., and Heath, D.E. (2017) Native and solubilized decellularized extracellular matrix: a critical assessment of their potential for improving the expansion of mesenchymal stem cells, Acta Biomater., 55, 1–12, doi: 10.1016/j.actbio.2017.04.014.
67. Sun, Y., Li, W., Lu, Z., Chen, R., Ling, J., Ran, Q., Jilka, R.L., and Chen, X.D. (2011) Rescuing replication and osteogenesis of aged mesenchymal stem cells by exposure to a young extracellular matrix, FASEB J., 25, 1474–1485, doi: 0.1096/fj.10-161497.
68. Ng, C.P., Sharif, A.R.M., Heath, D.E., Chow, J.W., Zhang, C.B., Chan-Park, M.B., Hammond, P.T., Chan, J.K.Y., and Griffith, L.G. (2014) Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM, Biomaterials, 35, 4046–4057, doi: 10.1016/j.biomaterials.2014.01.081.
69. Burns, J.S., Kristiansen, M., Kristensen, L.P., Larsen, K.H., Nielsen, M.O., Christiansen, H., Nehlin, J., Andersen, J.S., and Kassem, M. (2011) Decellularized matrix from tumorigenic human mesenchymal stem cells promotes neovascularization with galectin-1 dependent endothelial interaction, PLoS One, 6, e21888, doi: 10.1371/journal.pone.0021888.
70. Hoshiba, T., Lu, H., Kawazoe, N., and Chen, G. (2010) Decellularized matrices for tissue engineering, Expert Opin. Biol. Ther., 10, 1717–1728, doi: 10.1517/14712598.2010.534079.