БИОХИМИЯ, 2019, том 84, вып. 3, с. 314–329
УДК 577.218
KH-доменные поли(С)-связывающие белки как многосторонние регуляторы различных биологических процессов
Обзор
Институт цитологии РАН, 194064 Санкт-Петербург, Россия; электронная почта: i.nazarov@incras.ru
Поступила в редакцию 16.10.2018
После доработки 10.11.2018
Принята к публикации 21.11.2018
DOI: 10.1134/S0320972519030035
КЛЮЧЕВЫЕ СЛОВА: Pcbp1–4, hnRNP-K, экспрессия гена, клеточный цикл, рак, эмбриональное развитие, плюрипотентные стволовые клетки.
Аннотация
Пять известных членов семейства KH-доменных поли(С)-связывающих белков (Pcbp1–4, hnRNP-K) имеют необычайно широкий спектр клеточных функций, включая регуляцию транскрипции генов, процессинг пре-мРНК, сплайсинг, стабильность мРНК, регуляцию на уровне трансляции белков, контроль обмена железа и многие другие. Механистически эти белки функционируют посредством связывания с нуклеиновыми кислотами и через белок-белковые взаимодействия. Вследствие способности выполнять многочисленные функции, члены семейства KH-доменных поли(C)-связывающих белков вовлечены в широкий спектр биологических процессов, таких как эмбриональное развитие, дифференцировка клеток и рак. Нарушения нормальной экспрессии KH-доменного белка часто связаны с серьезными дефектами развития и неоплазией. В данном обзоре обобщен прогресс в исследованиях KH-доменных белков, проведенных за последние два десятилетия. Также сообщается о нашей недавней работе, предполагающей участие KH-фактора Pcbp1 в контроле перехода от наивного к праймированному плюрипотентному состоянию.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при финансовой поддержке РНФ (№ 17-14-01407).
Конфликт интересов
Авторы декларируют отсутствие конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания каких-либо исследований с использованием людей и животных в качестве объектов.
Список литературы
1. Siomi, H., Matunis, M.J., Michael, W.M., and Dreyfuss, G. (1993) The pre-mRNA binding K protein contains a novel evolutionarily conserved motif, Nucleic Acids Res., 21, 1193–1198.
2. Valverde, R., Edwards, L., and Regan, L. (2008) Structure and function of KH domains, FEBS J., 275, 2712–2726, doi: 10.1111/j.1742-4658.2008.06411.x.
3. Choi, H.S., Hwang, C.K., Song, K.Y., Law, P.Y., Wei, L.N., and Loh, H.H. (2009) Poly(C)-binding proteins as transcriptional regulators of gene expression, Biochem. Biophys. Res. Commun., 380, 431–436, doi: 10.1016/j.bbrc.2009.01.136.
4. Gallardo, M., Hornbaker, M.J., Zhang, X., Hu, P., Bueso-Ramos, C., and Post, S.M. (2016) Aberrant hnRNP K expression: аll roads lead to cancer, Cell Cycle, 15, 1552–1557, doi: 10.1080/15384101.2016.1164372.
5. Geuens, T., Bouhy, D., and Timmerman, V. (2016) The hnRNP family: insights into their role in health and disease, Hum. Genet., 135, 851–867, doi: 10.1007/s00439-016-1683-5.
6. Makeyev, A.V., and Liebhaber, S.A. (2002) The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms, RNA, 8, 265–278, doi: 10.1007/s00439-016-1683-5.
7. Philpott, C.C., Ryu, M.S., Frey, A., and Patel, S. (2017) Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells, J. Biol. Chem., 292, 12764–12771, doi: 10.1074/jbc.R117.791962.
8. Michelotti, G.A., Michelotti, E.F., Pullner, A., Duncan, R.C., Eick, D., and Levens, D. (1996) Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo, Mol. Cell Biol., 16, 2656–2669.
9. Ostrowski, J., Kawata, Y., Schullery, D.S., Denisenko, O.N., and Bomsztyk, K. (2003) Transient recruitment of the hnRNP K protein to inducibly transcribed gene loci, Nucleic Acids Res., 31, 3954–3962.
10. Choi, H.S., Song, K.Y., Hwang, C.K., Kim, C.S., Law, P.Y., Wei, L.N., and Loh, H.H. (2008) A proteomics approach for identification of single strand DNA-binding proteins involved in transcriptional regulation of mouse mu opioid receptor gene, Mol. Cell Proteomics, 7, 1517–1529, doi: 10.1074/mcp.M800052-MCP200.
11. Kim, S.S., Pandey, K.K., Choi, H.S., Kim, S.Y., Law, P.Y., Wei, L.N., and Loh, H.H. (2005) Poly(C) binding protein family is a transcription factor in mu-opioid receptor gene expression, Mol. Pharmacol., 68, 729–736.
12. Rivera-Gines, A., Cook, R.J., Loh, H.H., and Ko, J.L. (2006) Interplay of Sps and poly(C) binding protein 1 on the mu-opioid receptor gene expression, Biochem. Biophys. Res. Commun., 345, 530–537, doi: 10.1016/j.bbrc.2006.04.117.
13. Choi, H.S., Kim, C.S., Hwang, C.K., Song, K.Y., Law, P.Y., Wei, L.N., and Loh, H.H. (2007) Novel function of the poly(C)-binding protein alpha CP3 as a transcriptional repressor of the mu opioid receptor gene, FASEB J., 21, 3963–3973, doi: 10.1096/fj.07-8561com.
14. Du, K., Melnikova, I.N., and Gardner, P.D. (1998) Differential effects of heterogeneous nuclear ribonucleo-protein K on Sp1- and Sp3-mediated transcriptional activation of a neuronal nicotinic acetylcholine receptor promoter, J. Biol. Chem., 273, 19877–19883.
15. Ritchie, S.A., Pasha, M.K., Batten, D.J.P., Sharma, R.K., Olson, D.J.H., Ross, A.R.S., and Bonham, K. (2003) Identification of the SRC pyrimidine-binding protein (SPy) as hnRNP K: implications in the regulation of SRC1A transcription, Nucleic Acids Res., 31, 1502–1513.
16. Thakur, S., Nakamura, T., Calin, G., Russo, A., Tamburrino, J.F., Shimizu, M., Baldassarre, G., Battista, S., Fusco, A., Wassell, R.P., Dubois, G., Alder, H., and Croce, C.M. (2003) Regulation of BRCA1 transcription by specific single-stranded DNA binding factors, Mol. Cell Biol., 23, 3774–3787, doi: 10.1128/mcb.23.11.3774-3787.2003.
17. Lynch, M., Chen, L., Ravitz, M.J., Mehtani, S., Korenblat, K., Pazin, M.J., and Schmidt, E.V. (2005) hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation, Mol. Cell Biol., 25, 6436–6453, doi:10.1128/MCB.25.15.6436-6453.2005.
18. Da Silva, N., Bharti, A., and Shelley, C.S. (2002) hnRNP-K and Pur(alpha) act together to repress the transcriptional activity of the CD43 gene promoter, Blood, 100, 3536–3544.
19. Lau, J.S., Baumeister, P., Kim, E., Roy, B., Hsieh, T.Y., Lai, M., and Lee, A.S. (2000) Heterogeneous nuclear ribonucleoproteins as regulators of gene expression through interactions with the human thymidine kinase promoter, J. Cell Biochem., 79, 395–406.
20. Moumen, A., Magill, C., Dry, K.L., and Jackson, S.P. (2013) ATM-dependent phosphorylation of heterogeneous nuclear ribonucleoprotein K promotes p53 transcriptional activation in response to DNA damage, Cell Cycle, 12, 698–704, doi: 10.4161/cc.23592.
21. Kaiser, C.E., Van Ert, N.A., Agrawal, P., Chawla, R., Yang, D., and Hurley, L.H. (2017) Insight into the complexity of the i-motif and G-quadruplex DNA structures formed in the KRAS promoter and subsequent drug-induced gene repression, J. Am. Chem. Soc., 139, 8522–8536, doi: 10.1021/jacs.7b02046.
22. Banerjee, K., Wang, M., Cai, E., Fujiwara, N., Baker, H., and Cave, J.W. (2014) Regulation of tyrosine hydroxylase transcription by hnRNP K and DNA secondary structure, Nat. Commun., 5, 5769, doi: 10.1038/ncomms6769.
23. He, Q., Zeng, P., Tan, J.H., Ou, T.M., Gu, L.Q., Huang, Z.S., and Li, D. (2014) G-quadruplex-mediated regulation of telomere binding protein POT1 gene expression, Biochim. Biophys. Acta, 1840, 2222–2233, doi: 10.1016/j.bbagen.2014.03.001.
24. Saradhi, M., Kumari, S., Rana, M., Mukhopadhyay, G., and Tyagi, R.K. (2015) Identification and interplay of sequence specific DNA binding proteins involved in regulation of human Pregnane and Xenobiotic Receptor gene, Exp. Cell Res., 339, 187–196, doi: 10.1016/j.yexcr.2015.11.014.
25. Uribe, D.J., Guo, K., Shin, Y.J., and Sun, D. (2011) Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures, Biochemistry, 50, 3796–3806, doi: 10.1021/bi101633b.
26. Ghosh, A., Abdo, S., Zhao, S., Wu, C.H., Shi, Y., Lo, C.S., Chenier, I., Alquier, T., Filep, J.G., Ingelfinger, J.R., Zhang, S.L., and Chan, J.S.D. (2017) Insulin Inhibits Nrf2 gene expression via heterogeneous nuclear ribonucleoprotein F/K in diabetic mice, Endocrinology, 158, 903–919, doi: 10.1210/en.2016-1576
27. Sutherland, C., Cui, Y., Mao, H., and Hurley, L.H. (2016) A mechanosensor mechanism controls the G-quadruplex/i-motif molecular switch in the MYC promoter NHE III1, J. Am. Chem. Soc., 138, 14138–14151, doi: 10.1021/jacs.6b09196.
28. Nazarov, I.B., Krasnoborova, V.A., Mitenberg, A.G., Chikhirzhina, E.V., Davidov-Sinitzin, A.P., Liskovykh, M.A., and Tomilin, A.N. (2014) Transcription regulation of Oct4 (Pou5F1) gene by its distal enhancer, Cell Tissue Biol., 8, 27–32, doi: 10.1134/s1990519x14010106.
29. Ji, X., Park, J.W., Bahrami-Samani, E., Lin, L., Duncan-Lewis, C., Pherribo, G., Xing, Y., and Liebhaber, S.A. (2016) αCP binding to a cytosine-rich subset of polypyrimidine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome, Nucleic Acids Res., 44, 2283–2297, doi: 10.1093/nar/gkw088.
30. Akker, S.A., Misra, S., Aslam, S., Morgan, E.L., Smith, P.J., Khoo, B., and Chew, S.L. (2007) Pre-spliceosomal binding of U1 small nuclear ribonucleoprotein (RNP) and heterogenous nuclear RNP E1 is associated with suppression of a growth hormone receptor pseudoexon, Mol. Endocrinol., 21, 2529–2540, doi: 10.1210/me.2007-0038.
31. Meng, Q., Rayala, S.K., Gururaj, A.E., Talukder, A.H., O’Malley, B.W., and Kumar, R. (2007) Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1, Proc. Natl. Acad. Sci. USA, 104, 5866–5871, doi: 10.1073/pnas.0701065104.
32. Zhang, T., Huang, X.H., Dong, L., Hu, D., Ge, C., Zhan, Y.Q., Xu, W.X., Yu, M., Li, W., Wang, X., Tang, L., Li, C.Y., and Yang, X.M. (2010) PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells, Mol. Cancer, 9, 72, doi: 10.1186/1476-4598-9-72.
33. Lian, W.X., Yin, R.H., Kong, X.Z., Zhang, T., Huang, X.H., Zheng, W.W., Yang, Y., Zhan, Y.Q., Xu, W.X., Yu, M., Ge, C.H., Guo, J.T., Li, C.Y., and Yang, X.M. (2012) THAP11, a novel binding protein of PCBP1, negatively regulates CD44 alternative splicing and cell invasion in a human hepatoma cell line, FEBS Lett., 586, 1431–1438, doi: 10.1016/j.febslet.2012.04.016.
34. Bomsztyk, K., Denisenko, O., and Ostrowski, J. (2004) hnRNP K: one protein multiple processes, Bioessays, 26, 629–638, doi: 10.1002/bies.20048.
35. Mikula, M., Dzwonek, A., Karczmarski, J., Rubel, T., Dadlez, M., Wyrwicz, L.S., Bomsztyk, K., and Ostrowski, J. (2006) Landscape of the hnRNP K protein-protein interactome, Proteomics, 6, 2395–2406, doi: 10.1002/pmic.200500632.
36. Expert-Bezancon, A., Le Caer, J.P., and Marie, J. (2002) Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a component of an intronic splicing enhancer complex that activates the splicing of the alternative exon 6A from chicken beta-tropomyosin pre-mRNA, J. Biol. Chem., 277, 16614–16623, doi: 10.1074/jbc.M201083200.
37. Cao, W., Razanau, A., Feng, D., Lobo, V.G., and Xie, J. (2012) Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation, Nucleic Acids Res., 40, 8059–8071, doi: 10.1093/nar/gks504.
38. Venables, J.P., Koh, C.S., Froehlich, U., Lapointe, E., Couture, S., Inkel, L., Bramard, A., Paquet, E.R., Watier, V., Durand, M., Lucier, J.F., Gervais-Bird, J., Tremblay, K., Prinos, P., Klinck, R., Elela, S.A., and Chabot, B. (2008) Multiple and specific mRNA processing targets for the major human hnRNP proteins, Mol. Cell Biol., 28, 6033–6043, doi: 10.1128/MCB.00726-08.
39. Weiss, I.M., and Liebhaber, S.A. (1995) Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3′-nontranslated region, Mol. Cell Biol., 15, 2457–2465.
40. Wang, X., Kiledjian, M., Weiss, I.M., and Liebhaber, S.A. (1995) Detection and characterization of a 3′-untranslated region ribonucleoprotein complex associated with human alpha-globin mRNA stability, Mol. Cell Biol., 15, 1769–1777.
41. Ren, C., Cho, S.J., Jung, Y.S., and Chen, X. (2014) DNA polymerase eta is regulated by poly(rC)-binding protein 1 via mRNA stability, Biochem. J., 464, 377–386, doi: 10.1042/BJ20141164.
42. Hwang, C.K., Wagley, Y., Law, P.Y., Wei, L.N., and Loh, H.H. (2017) Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP), Gene, 598, 113–130, doi: 10.1016/j.gene.2016.11.003.
43. Song, K.Y., Choi, H.S., Law, P.Y., Wei, L.N., and Loh, H.H. (2017) Post-transcriptional regulation of the human mu-opioid receptor (MOR) by morphine-induced RNA binding proteins hnRNP K and PCBP1, J. Cell Physiol., 232, 576–584, doi: 10.1002/jcp.25455.
44. Shi, H., Li, H., Yuan, R., Guan, W., Zhang, X., Zhang, S., Zhang, W., Tong, F., Li, L., Song, Z., Wang, C., Yang, S., and Wang, H. (2018) PCBP1 depletion promotes tumorigenesis through attenuation of p27(Kip1) mRNA stability and translation, J. Exp. Clin. Cancer Res., 37, 187, doi: 10.1186/s13046-018-0840-1.
45. Vidaki, M., Drees, F., Saxena, T., Lanslots, E., Taliaferro, M.J., Tatarakis, A., Burge, C.B., Wang, E.T., and Gertler, F.B. (2017) A requirement for Mena, an actin regulator, in local mRNA translation in developing neurons, Neuron, 95, 608–622.e605, doi: 10.1016/j.neuron.2017.06.048.
46. Lee, S.J., Oses-Prieto, J.A., Kawaguchi, R., Sahoo, P.K., Kar, A.N., Rozenbaum, M., Oliver, D., Chand, S., Ji, H., Shtutman, M., Miller-Randolph, S., Taylor, R.J., Fainzilber, M., Coppola, G., Burlingame, A.L., and Twiss, J.L. (2018) hnRNPs interacting with mRNA localization motifs define axonal RNA regulons, Mol. Cell. Proteomics, 11, 2091–2106, doi: 10.1074/mcp.RA118.000603.
47. Leal, G., Comprido, D., de Luca, P., Morais, E., Rodrigues, L., Mele, M., Santos, A.R., Costa, R.O., Pinto, M.J., Patil, S., Berentsen, B., Afonso, P., Carreto, L., Li, K.W., Pinheiro, P., Almeida, R.D., Santos, M.A.S., Bramham, C.R., and Duarte, C.B. (2017) The RNA-binding protein hnRNP K mediates the effect of BDNF on dendritic mRNA metabolism and regulates synaptic NMDA receptors in hippocampal neurons, eNeuro, 4, doi: 10.1523/ENEURO.0268-17.2017.
48. Chakraborty, A., Mukherjee, S., Saha, S., De, S., and Sengupta Bandyopadhyay, S. (2017) Phorbol-12-myristate-13-acetate-mediated stabilization of leukemia inhibitory factor (lif) mRNA: involvement of Nucleolin and PCBP1, Biochem. J., 474, 2349–2363, doi: 10.1042/BCJ20170051.
49. Tang, Y.S., Khan, R.A., Xiao, S., Hansen, D.K., Stabler, S.P., Kusumanchi, P., Jayaram, H.N., and Antony, A.C. (2017) Evidence favoring a positive feedback loop for physiologic auto upregulation of hnRNP-E1 during prolonged folate deficiency in human placental cells, J. Nutr., 147, 482–498, doi: 10.3945/jn.116.241364.
50. Zhang, Y., Si, Y., Ma, N., and Mei, J. (2015) The RNA-binding protein PCBP2 inhibits Ang II-induced hypertrophy of cardiomyocytes though promoting GPR56 mRNA degeneration, Biochem. Biophys. Res. Commun., 464, 679–684, doi: 10.1016/j.bbrc.2015.06.139.
51. Holcik, M., and Liebhaber, S.A. (1997) Four highly stable eukaryotic mRNAs assemble 3′-untranslated region RNA-protein complexes sharing cis and trans components, Proc. Natl. Acad. Sci. USA, 94, 2410–2414.
52. Ostareck, D.H., Ostareck-Lederer, A., Wilm, M., Thiele, B.J., Mann, M., and Hentze, M.W. (1997) mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′-end, Cell, 89, 597–606, doi: 10.1016/s0030-6657(08)70226-9.
53. Ostareck, D.H., Ostareck-Lederer, A., Shatsky, I.N., and Hentze, M.W. (2001) Lipoxygenase mRNA silencing in erythroid differentiation: the 3’UTR regulatory complex controls 60S ribosomal subunit joining, Cell, 104, 281–290, doi: 10.1016/s0968-0004(05)00043-5.
54. Collier, B., Goobar-Larsson, L., Sokolowski, M., and Schwartz, S. (1998) Translational inhibition in vitro of human papillomavirus type 16 L2 mRNA mediated through interaction with heterogenous ribonucleoprotein K and poly(rC)-binding proteins 1 and 2, J. Biol. Chem., 273, 22648–22656.
55. Chaudhury, A., Hussey, G.S., Ray, P.S., Jin, G., Fox, P.L., and Howe, P.H. (2010) TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI, Nat. Cell Biol., 12, 286–293, doi: 10.1038/ncb2029
56. Evans, J.R., Mitchell, S.A., Spriggs, K.A., Ostrowski, J., Bomsztyk, K., Ostarek, D., and Willis, A.E. (2003) Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo, Oncogene, 22, 8012–8020, doi: 10.1038/sj.onc.1206645.
57. Blyn, L.B., Towner, J.S., Semler, B.L., and Ehrenfeld, E. (1997) Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA, J. Virol., 71, 6243–6246.
58. Ogram, S.A., Spear, A., Sharma, N., and Flanegan, J.B. (2010) The 5’CL-PCBP RNP complex, 3′ poly(A) tail and 2A(pro) are required for optimal translation of poliovirus RNA, Virology, 397, 14–22, doi: 10.1016/j.virol.2009.11.006.
59. Gamarnik, A.V., and Andino, R. (1997) Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA, RNA, 3, 882–892.
60. Pickering, B.M., Mitchell, S.A., Evans, J.R., and Willis, A.E. (2003) Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo, Nucleic Acids Res., 31, 639–646.
61. Napthine, S., Treffers, E.E., Bell, S., Goodfellow, I., Fang, Y., Firth, A.E., Snijder, E.J., and Brierley, I. (2016) A novel role for poly(C) binding proteins in programmed ribosomal frameshifting, Nucleic Acids Res., 44, 5491–5503, doi: 10.1093/nar/gkw480.
62. Bogdan, A.R., Miyazawa, M., Hashimoto, K., and Tsuji, Y. (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease, Trends. Biochem. Sci., 41, 274–286, doi: 10.1016/j.tibs.2015.11.012.
63. Dixon, S.J., and Stockwell, B.R. (2014) The role of iron and reactive oxygen species in cell death, Nat. Chem. Biol., 10, 9–17, doi: 10.1038/nchembio.
64. Torti, S.V., and Torti, F.M. (2013) Iron and cancer: more ore to be mined, Nat. Rev. Cancer, 13, 342–355, doi: 10.1038/ nrc3495.
65. Nandal, A., Ruiz, J.C., Subramanian, P., Ghimire-Rijal, S., Sinnamon, R.A., Stemmler, T.L., Bruick, R.K., and Philpott, C.C. (2011) Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2, Cell Metab., 14, 647–657, doi: 10.1016/j.cmet.2011.08.015.
66. Frey, A.G., Nandal, A., Park, J.H., Smith, P.M., Yabe, T., Ryu, M.S., Ghosh, M.C., Lee, J., Rouault, T.A., Park, M.H., and Philpott, C.C. (2014) Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase, Proc. Natl. Acad. Sci. USA, 111, 8031–8036, doi: 10.1073/pnas.1402732111.
67. Yanatori, I., Richardson, D.R., Toyokuni, S., and Kishi, F. (2017) The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer, J. Biol. Chem., 292, 13205–13229, doi: 10.1074/jbc.M117.776021.
68. Wang, Z., Yin, W., Zhu, L., Li, J., Yao, Y., Chen, F., Sun, M., Zhang, J., Shen, N., Song, Y., and Chang, X. (2018) Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production, Immunity, 49, 80–92 e87, doi: 10.1016/j.immuni.2018.05.008.
69. Yanatori, I., Yasui, Y., Tabuchi, M., and Kishi, F. (2014) Chaperone protein involved in transmembrane transport of iron, Biochem. J., 462, 25–37, doi: 10.1042/BJ20140225.
70. Yanatori, I., Richardson, D.R., Imada, K., and Kishi, F. (2016) Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2, J. Biol. Chem., 291, 17303–17318, doi: 10.1074/jbc.M116.721936.
71. Mikula, M., Bomsztyk, K., Goryca, K., Chojnowski, K., and Ostrowski, J. (2013) Heterogeneous nuclear ribonucleoprotein (HnRNP) K genome-wide binding survey reveals its role in regulating 3′-end RNA processing and transcription termination at the early growth response 1 (EGR1) gene through XRN2 exonuclease, J. Biol. Chem., 288, 24788–24798, doi: 10.1074/jbc.M113.496679.
72. Pintacuda, G., Wei, G., Roustan, C., Kirmizitas, B.A., Solcan, N., Cerase, A., Castello, A., Mohammed, S., Moindrot, B., Nesterova, T.B., and Brockdorff, N. (2017) hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing, Mol. Cell, 68, 955–969, e910, doi: 10.1016/j.molcel.2017.11.013.
73. Ishii, T., Hayakawa, H., Igawa, T., Sekiguchi, T., and Sekiguchi, M. (2018) Specific binding of PCBP1 to heavily oxidized RNA to induce cell death, Proc. Natl. Acad. Sci. USA, 115, 6715–6720, doi: 10.1073/pnas.1806912115.
74. Carpenter, B., McKay, M., Dundas, S.R., Lawrie, L.C., Telfer, C., and Murray, G.I. (2006) Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer, Br. J. Cancer, 95, 921–927, doi: 10.1038/sj.bjc.6603349.
75. Chen, L.C., Chung, I.C., Hsueh, C., Tsang, N.M., Chi, L.M., Liang, Y., Chen, C.C., Wang, L.J., and Chang, Y.S. (2010) The antiapoptotic protein, FLIP, is regulated by heterogeneous nuclear ribonucleoprotein K and correlates with poor overall survival of nasopharyngeal carcinoma patients, Cell Death Differ., 17, 1463–1473, doi: 10.1038/cdd.2010.24.
76. Ciarlo, M., Benelli, R., Barbieri, O., Minghelli, S., Barboro, P., Balbi, C., and Ferrari, N. (2012) Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells, Int. J. Cancer, 131, 582–590, doi: 10.1002/ijc.26402.
77. Wen, F., Shen, A., Shanas, R., Bhattacharyya, A., Lian, F., Hostetter, G., and Shi, J. (2010) Higher expression of the heterogeneous nuclear ribonucleoprotein k in melanoma, Ann. Surg. Oncol., 17, 2619–2627, doi: 10.1245/s10434-010-1121-1.
78. Wu, C.S., Chang, K.P., Chen, L.C., Chen, C.C., Liang, Y., Hseuh, C., and Chang, Y.S. (2012) Heterogeneous ribonucleoprotein K and thymidine phosphorylase are independent prognostic and therapeutic markers for oral squamous cell carcinoma, Oral Oncol., 48, 516–522, doi: 10.1016/j.oraloncology.
79. Chen, X., Gu, P., Xie, R., Han, J., Liu, H., Wang, B., Xie, W., Xie, W., Zhong, G., Chen, C., Xie, S., Jiang, N., Lin, T., and Huang, J. (2017) Heterogeneous nuclear ribonucleoprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer, J. Cell Mol. Med., 21, 1266–1279, doi: 10.1111/jcmm.12999.
80. Kawasaki, Y., Komiya, M., Matsumura, K., Negishi, L., Suda, S., Okuno, M., Yokota, N., Osada, T., Nagashima, T., Hiyoshi, M., Okada-Hatakeyama, M., Kitayama, J., Shirahige, K., and Akiyama, T. (2016) MYU, a target lncRNA for Wnt/c-Myc signaling, mediates induction of CDK6 to promote cell cycle progression, Cell Rep., 16, 2554–2564, doi: 10.1016/j.celrep.2016.08.015.
81. Shin, C.H., Lee, H., Kim, H.R., Choi, K.H., Joung, J.G., and Kim, H.H. (2017) Regulation of PLK1 through competition between hnRNPK, miR-149-3p and miR-193b-5p, Cell Death Differ., 24, 1861–1871, doi: 10.1038/cdd.2017.106.
82. Zhu, X.H., Wang, J.M., Yang, S.S., Wang, F.F., Hu, J.L., Xin, S.N., Men, H., Lu, G.F., Lan, X.L., Zhang, D., Wang, X.Y., Liao, W.T., Ding, Y.Q., and Liang, L. (2017) Down-regulation of DAB2IP promotes colorectal cancer invasion and metastasis by translocating hnRNPK into nucleus to enhance the transcription of MMP2, Int. J. Cancer, 141, 172–183, doi: 10.1002/ijc.30701.
83. Zhao, S., Feng, J., Wang, Q., Tian, L., Zhang, Y., and Li, H. (2018) hnRNP K plays a protective role in TNF-alpha-induced apoptosis in podocytes, Biosci. Rep., 38, BSR20180288, doi: 10.1042/BSR20180288.
84. Kim, T., Jeon, Y.J., Cui, R., Lee, J.H., Peng, Y., Kim, S.H., Tili, E., Alder, H., and Croce, C.M. (2015) Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis, J. Natl. Cancer Inst., 107, doi: 10.1093/jnci/dju505
85. Huang, H., Han, Y., Yang, X., Li, M., Zhu, R., Hu, J., Zhang, X., Wei, R., Li, K., and Gao, R. (2017) HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway, Oncotarget, 8, 103364–103374, doi: 10.18632/oncotarget.21873.
86. Gallardo, M., Lee, H.J., Zhang, X., Bueso-Ramos, C., Pageon, L.R., McArthur, M., Multani, A., Nazha, A., Manshouri, T., Parker-Thornburg, J., Rapado, I., Quintas-Cardama, A., Kornblau, S.M., Martinez-Lopez, J., and Post, S.M. (2015) hnRNP K is a haploinsufficient tumor suppressor that regulates proliferation and differentiation programs in hematologic malignancies, Cancer Cell, 28, 486–499, doi: 10.1016/j.ccell.2015.09.001.
87. Enge, M., Bao, W., Hedstrom, E., Jackson, S.P., Moumen, A., and Selivanova, G. (2009) MDM2-dependent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmacologically activated p53, Cancer Cell, 15, 171–183, doi: 10.1016/j.ccr.2009.01.019.
88. Moumen, A., Masterson, P., O’Connor, M.J., and Jackson, S.P. (2005) hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage, Cell, 123, 1065–1078, doi: 10.1016/j.cell.2005.09.032.
89. Shnyreva, M., Schullery, D.S., Suzuki, H., Higaki, Y., and Bomsztyk, K. (2000) Interaction of two multifunctional proteins. Heterogeneous nuclear ribonucleoprotein K and Y-box-binding protein, J. Biol. Chem., 275, 15498–15503, doi: 10.1074/jbc.275.20.15498.
90. Dimitrova, N., Zamudio, J.R., Jong, R.M., Soukup, D., Resnick, R., Sarma, K., Ward, A. J., Raj, A., Lee, J.T., Sharp, P.A., and Jacks, T. (2014) LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint, Mol. Cell, 54, 777–790, doi: 10.1016/j.molcel.2014.04.025.
91. Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M.J., Kenzelmann-Broz, D., Khalil, A.M., Zuk, O., Amit, I., Rabani, M., Attardi, L.D., Regev, A., Lander, E.S., Jacks, T., and Rinn, J.L. (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response, Cell, 142, 409–419, doi: 10.1016/j.cell.2010.06.040.
92. Denisenko, O.N., and Bomsztyk, K. (1997) The product of the murine homolog of the Drosophila extra sex combs gene displays transcriptional repressor activity, Mol. Cell Biol., 17, 4707–4717.
93. Waggoner, S.A., Johannes, G.J., and Liebhaber, S.A. (2009) Depletion of the poly(C)-binding proteins alphaCP1 and alphaCP2 from K562 cells leads to p53-independent induction of cyclin-dependent kinase inhibitor (CDKN1A) and G1 arrest, J. Biol. Chem., 284, 9039–9049, doi: 10.1074/jbc.M806986200.
94. Link, L.A., Howley, B.V., Hussey, G.S., and Howe, P.H. (2016) PCBP1/HNRNP E1 protects chromosomal integrity by translational regulation of CDC27, Mol. Cancer Res., 14, 634–646, doi: 10.1158/1541-7786.MCR-16-0018.
95. Ji, X., Humenik, J., Yang, D., and Liebhaber, S.A. (2018) PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing, Nucleic Acids Res., 46, 2030–2044, doi: 10.1093/nar/gkx1255.
96. Zhang, Y., Meng, L., Xiao, L., Liu, R., Li, Z., and Wang, Y.L. (2018) The RNA-binding protein PCBP1 functions as a tumor suppressor in prostate cancer by inhibiting mitogen activated protein kinase 1, Cell Physiol. Biochem., 48, 1747–1754, doi: 10.1159/000492315.
97. Ji, F.J., Wu, Y.Y., An, Z., Liu, X.S., Jiang, J.N., Chen, F.F., and Fang, X.D. (2017) Expression of both poly r(C) binding protein 1 (PCBP1) and miRNA-3978 is suppressed in peritoneal gastric cancer metastasis, Sci. Rep., 7, 15488, doi: 10.1038/s41598-017-15448-9.
98. Grelet, S., Link, L.A., Howley, B., Obellianne, C., Palanisamy, V., Gangaraju, V.K., Diehl, J.A., and Howe, P.H. (2017) A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression, Nat. Cell Biol., 19, 1105–1115, doi: 10.1038/ncb359.
99. Zhang, W., Shi, H., Zhang, M., Liu, B., Mao, S., Li, L., Tong, F., Liu, G., Yang, S., and Wang, H. (2016) Poly C binding protein 1 represses autophagy through downregulation of LC3B to promote tumor cell apoptosis in starvation, Int. J. Biochem. Cell Biol., 73, 127–136, doi: 10.1016/j.biocel.2016.02.009.
100. Li, J., Feng, Q., Wei, X., and Yu, Y. (2016) MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1, Tumour Biol., 37, 15221–15228, doi: 10.1007/s13277-016-5347-9.
101. Huo, L.R., Ju, W., Yan, M., Z]ou, J.H., Yan, W., He, B., Zhao, X.L., Jenkins, E.C., Brown, W.T., and Zhong, N. (2010) Identification of differentially expressed transcripts and translatants targeted by knock-down of endogenous PCBP1, Biochim. Biophys. Acta, 1804, 1954–1964, doi: 10.1016/j.bbapap.2010.07.002.
102. Tripathi, V., and Zhang, Y.E. (2017) Redirecting RNA splicing by SMAD3 turns TGF-beta into a tumor promoter, Mol. Cell Oncol., 4, e1265699, doi: 10.1080/23723556.2016.1265699.
103. Howley, B.V., Hussey, G.S., Link, L.A., and Howe, P.H. (2016) Translational regulation of inhibin betaA by TGFbeta via the RNA-binding protein hnRNP E1 enhances the invasiveness of epithelial-to-mesenchymal transitioned cells, Oncogene, 35, 1725–1735, doi: 10.1038/onc.2015.238.
104. Zhang, P., Wang, N., Lin, X., Jin, L., Xu, H., Li, R., and Huang, H. (2016) Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos, Biochem. Biophys. Res. Commun., 471, 260–265, doi: 10.1016/j.bbrc.2016.02.003.
105. Lin, N., Chang, K.Y., Li, Z., Gates, K., Rana, Z.A., Dang, J., Zhang, D., Han, T., Yang, C.S., Cunningham, T.J., Head, S.R., Duester, G., Dong, P.D., and Rana, T.M. (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment, Mol. Cell, 53, 1005–1019, doi: 10.1016/j.molcel.2014.01.021.
106. Bao, X., Wu, H., Zhu, X., Guo, X., Hutchins, A.P., Luo, Z., Song, H., Chen, Y., Lai, K., Yin, M., Xu, L., Zhou, L., Chen, J., Wang, D., Qin, B., Frampton, J., Tse, H.F., Pei, D., Wang, H., Zhang, B., and Esteban, M.A. (2015) The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters, Cell Res., 25, 80–92, doi: 10.1038/cr.2014.165.
107. Chia, N.Y., Chan, Y.S., Feng, B., Lu, X., Orlov, Y.L., Moreau, D., Kumar, P., Yang, L., Jiang, J., Lau, M.S., Huss, M., Soh, B.S., Kraus, P., Li, P., Lufkin, T., Lim, B., Clarke, N.D., Bard, F., and Ng, H.H. (2010) A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity, Nature, 468, 316–320, doi: 10.1038/nature09531.
108. Ding, L., Paszkowski-Rogacz, M., Nitzsche, A., Slabicki, M.M., Heninger, A.K., de Vries, I., Kittler, R., Junqueira, M., Shevchenko, A., Schulz, H., Hubner, N., Doss, M.X., Sachinidis, A., Hescheler, J., Iacone, R., Anastassiadis, K., Stewart, A.F., Pisabarro, M.T., Caldarelli, A., Poser, I., Theis, M, and Buchholz, F. (2009) A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity, Cell Stem Cell, 4, 403–415, doi: 10.1016/j.stem.2009.03.009.
109. Thompson, P.J., Dulberg, V., Moon, K.M., Foster, L.J., Chen, C., Karimi, M.M., and Lorincz, M.C. (2015) hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells, PLoS Genet., 11, e1004933, doi: 10.1371/journal.pgen.1004933.
110. Fujikura, J., Yamato, E., Yonemura, S., Hosoda, K., Masui, S., Nakao, K., Miyazaki Ji, J., and Niwa, H. (2002) Differentiation of embryonic stem cells is induced by GATA factors, Genes Dev., 16, 784–789, doi: 10.1101/gad.968802.
111. Nika, E., Brugnoli, F., Piazzi, M., Lambertini, E., Grassilli, S., Bavelloni, A., Piva, R., Capitani, S., and Bertagnolo, V. (2014) hnRNP K in PU.1-containing complexes recruited at the CD11b promoter: a distinct role in modulating granulocytic and monocytic differentiation of AML-derived cells, Biochem. J., 463, 115–122, doi: 10.1042/BJ20140358.
112. Fan, X., Xiong, H., Wei, J., Gao, X., Feng, Y., Liu, X., Zhang, G., He, Q.Y., Xu, J., and Liu, L. (2015) Cytoplasmic hnRNPK interacts with GSK3beta and is essential for the osteoclast differentiation, Sci. Rep., 5, 17732, doi: 10.1038/srep17732.
113. Shi, Z., Zhao, C., Yang, Y., Teng, H., Guo, Y., Ma, M., Guo, X., Zhou, Z., Huo, R., and Zhou, Q. (2015) Maternal PCBP1 determines the normal timing of pronucleus formation in mouse eggs, Cell. Mol. Life Sci., 72, 3575–3586, doi: 10.1007/s00018-015-1905-3.
114. Xia, M., He, H., Wang, Y., Liu, M., Zhou, T., Lin, M., Zhou, Z., Huo, R., Zhou, Q., and Sha, J. (2012) PCBP1 is required for maintenance of the transcriptionally silent state in fully grown mouse oocytes, Cell Cycle, 11, 2833–2842, doi: 10.4161/cc.21169.
115. Ghanem, L.R., Kromer, A., Silverman, I.M., Chatterji, P., Traxler, E., Penzo-Mendez, A., Weiss, M.J., Stanger, B.Z., and Liebhaber, S.A. (2015) The Poly(C) binding protein Pcbp2 and its retrotransposed derivative Pcbp1 are independently essential to mouse development, Mol. Cell Biol., 36, 304–319, doi: 10.1128/MCB.00936-15.
116. Espinoza-Lewis, R.A., Yang, Q., Liu, J., Huang, Z.P., Hu, X., Chen, D., and Wang, D.Z. (2017) Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts, J. Biol. Chem., 292, 9540–9550, doi: 10.1074/jbc.M116.773671.
117. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., and Saitou, M. (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells, Cell, 146, 519–532, doi: 10.1016/j.cell.2011.06.052.
118. Chen, Q., Cai, Z.K., Chen, Y.B., Gu, M., Zheng, D.C., Zhou, J., and Wang, Z. (2015) Poly r(C) binding protein-1 is central to maintenance of cancer stem cells in prostate cancer cells, Cell Physiol. Biochem., 35, 1052–1061, doi: 10.1159/000373931.