БИОХИМИЯ, 2019, том 84, вып. 3, с. 297–313
УДК 616
Развитие гемопоэтических стволовых клеток в раннем эмбрионе млекопитающих
Обзор
1 MRC Centre for Regenerative Medicine, University of Edinburgh, EH16 4U, Edinburgh, United Kingdom; E-mail: srybtsov@ed.ac.uk
2 Федеральный научно-клинический центр физико-химической медицины ФМБА России, 119435 Москва, Россия; электронная почта: lagar@rcpcm.org
Поступила в редакцию 20.11.2018
После доработки 04.12.2018
Принята к публикации 04.12.2018
DOI: 10.1134/S0320972519030023
КЛЮЧЕВЫЕ СЛОВА: гемопоэтические стволовые клетки (ГСК), предшественники клеток крови, иерархия кроветворения, развитие мыши, гемопоэз человека, АГМ, эмбрион.
Аннотация
Гемопоэтические стволовые клетки (ГСК) первый тип стволовых клеток, обнаруженных в организме человека. Их существование было предсказано А.А. Максимовым и экспериментально доказано Тиллом и Мак-Каллоком. ГСК — первые стволовые клетки, которые были успешно применены в терапии и до сих пор активно используются. Даже единственная ГСК способна дать начало всем типам клеток крови при внутривенной трансплантации. Множество исследований последних десятилетий было посвящено изучению происхождения и иерархии ГСК, определению их молекулярного фенотипа в организме человека и животных, а также особенностям их функционирования и развития. В связи с постоянной потребностью в донорской крови и ГСК, пригодных для терапевтических трансплантаций, в последние годы рассматривается экспериментальная возможность получения ГСК in vitro путем направленной дифференцировки плюрипотентных стволовых клеток (ПСК). Однако, несмотря на все усилия, пока не удается воспроизвести in vitro онтогенез ГСК и получить клетки, способные к долговременному поддержанию кроветворения. Изучение гемопоэза и его становления в эмбриональном развитии не только облегчает создание и усовершенствование протоколов получения клеток крови из ПСК, но и позволяет лучше понять патогенез различных видов пролиферативных заболеваний крови, анемий и иммунодефицитов. Данный обзор посвящен развитию кроветворения в онтогенезе млекопитающих.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена при поддержке РНФ (грант № 14-15-00930; Лагарькова М.А.).
Благодарности
Авторы выражают искреннюю благодарность профессору Нине Иосифовне Дризе за ценные замечания и советы, данные при подготовке обзора, и Наталье Рыбцовой за помощь в оформлении.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Список литературы
1. Чертков И.Л., Гуревич О.А. (1984) Стволовая кроветворная клетка и ее микроокружение, Медицина, Москва, 238 c.
2. Чертков И.Л., Фриденштейн А.Я. (1977) Клеточные основы кроветворения (кроветворные клетки-предшественники), Медицина, Москва, 272 c.
3. Воробьев А.И., Бриллиант М.Д., Чертков И.Л. (1981) Современная схема кроветворения и возможные мишени гемобластозов, Тер. архив, 53, 9, 3–14.
4. Majeti, R., Park, C.Y., and Weissman, I.L. (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood, Cell Stem Cell, 1, 6, 635–645, doi: 10.1016/j.stem.2007.10.001.
5. Воробьев А.И., Дризе Н.И., Чертков И.Л. (2006) Схема кроветворения: 2005, Тер. архив, 7, 5–12.
6. Луговская С.А., Почтарь М.Е. (2011) Гематологический атлас, 3-е издание, Москва–Тверь, Триада, 368 c.
7. Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K.L., Ema, H., and Nakauchi, H. (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells, Cell, 154, 1112–1126, doi: 10.1016/j.cell.2013.08.007.
8. Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O.I., Wilson, G., Kaufmann, K.B., McLeod, J., Laurenti, E., Dunant, C.F., McPherson, J.D., Stein, L.D., Dror, Y., and Dick, J.E. (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny, Science, 351, aab2116, doi: 10.1126/science.aab2116.
9. Maksimov, A. (1909) Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Saugetiere, Folia Haematologica, Leipzig, Klinghardt, 8, 125–134.
10. Максимов А. (2009) Лимфоцит как общая стволовая клетка различных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих, Клеточная терапия и трансплантация, 1, 3, doi: 10.3205/ctt-2009-en-000032.02.
11. Деев Р.В. (2005) Научное наследие Александра Максимова и современность, Клеточная трансплантология и тканевая инженерия, 1, 4–11.
12. Siminovitch, L., McCulloch, E.A., and Till, J.E. (1963) The distribution of colony-forming cells among spleen colonies, J. Cell Comp. Physiol., 62, 327–336.
13. Becker, A.J., McCulloch, E.A., and Till, J.E. (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells, Nature, 197, 452–454.
14. Dieterlen-Lievre, F. (1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach, J. Embryol. Exp. Morphol., 33, 607–619.
15. Medvinsky, A.L., Samoylina, N.L., Muller, A.M., and Dzierzak, E.A. (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse, Nature, 364, 64–67, doi: 10.1038/364064a0.
16. Muller, A.M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E. (1994) Development of hematopoietic stem cell activity in the mouse embryo, Immunity, 1, 291–301.
17. Medvinsky, A., and Dzierzak, E. (1996) Definitive hematopoiesis is autonomously initiated by the AGM region, Cell, 86, 897–906.
18. Ivanovs, A., Rybtsov, S., Welch, L., Anderson, R.A., Turner, M.L., and Medvinsky, A. (2011) Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region, J. Exp. Med., 208, 2417–2427, doi: 10.1084/jem.20111688.
19. Baron, M.H. (2013) Concise review: early embryonic erythropoiesis: not so primitive after all, Stem Cells, 31, 849–856, doi: 10.1002/stem.1342.
20. Zhang, H., and Reilly, M.P. (2017) Human induced pluripotent stem cell-derived macrophages for unraveling human macrophage biology, Arterioscler. Thromb. Vasc. Biol., 37, 2000–2006, doi: 10.1161/atvbaha.117.309195.
21. Yamane, T. (2018) Mouse yolk sac hematopoiesis, Front. Cell Dev. Biol., 6, 80, doi: 10.3389/fcell.2018.00080.
22. Antonchuk, J., Sauvageau, G., and Humphries, R.K. (2002) HOXB4-induced expansion of adult hematopoietic stem cells ex vivo, Cell, 109, 39–45.
23. McKinney-Freeman, S.L., Naveiras, O., Yates, F., Loewer, S., Philitas, M., Curran, M., Park, P.J., and Daley, G.Q. (2009) Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells, Blood, 114, 268–278, doi: 10.1182/blood-2008-12-193888.
24. Kyba, M., Perlingeiro, R.C., and Daley, G.Q. (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors, Cell, 109, 29–37.
25. Blaser, B.W., and Zon, L.I. (2018) Making HSCs in vitro: don’t forget the hemogenic endothelium, Blood, 132, 1372–1378, doi: 10.1182/blood-2018-04-784140.
26. Ivanovs, A., Rybtsov, S., Ng, E.S., Stanley, E.G., Elefanty, A.G., and Medvinsky, A. (2017) Human haematopoietic stem cell development: from the embryo to the dish, Development, 144, 2323–2337, doi: 10.1242/dev.134866.
27. Lugus, J.J., Park, C., Ma, Y.D., and Choi, K. (2009) Both primitive and definitive blood cells are derived from Flk-1+ mesoderm, Blood, 113, 563–566, doi: 10.1182/blood-2008-06-162750.
28. Nostro, M.C., Cheng, X., Keller, G.M., and Gadue, P. (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood, Cell Stem Cell, 2, 60–71, doi: 10.1016/j.stem.2007.10.011.
29. Ditadi, A., Sturgeon, C.M., and Keller, G. (2017) A view of human haematopoietic development from the Petri dish, Nat. Rev. Mol. Cell Biol., 18, 56–67, doi: 10.1038/nrm.2016.127.
30. Slukvin, I.I., and Kumar, A. (2018) The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells, Cell Mol. Life Sci., doi: 10.1007/s00018-018-2871-3.
31. Sakurai, H., Era, T., Jakt, L.M., Okada, M., Nakai, S., and Nishikawa, S. (2006) In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility, Stem Cells, 24, 575–586, doi: 10.1634/stemcells.2005-0256.
32. Park, C., Afrikanova, I., Chung, Y.S., Zhang, W.J., Arentson, E., Fong, G.G., Rosendahl, A., and Choi, K. (2004) A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells, Development, 131, 2749–2762, doi: 10.1242/dev.01130.
33. Shalaby, F., Ho, J., Stanford, W.L., Fischer, K.D., Schuh, A.C., Schwartz, L., Bernstein, A., and Rossant, J. (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis, Cell, 89, 981–990.
34. Ferkowicz, M.J., and Yoder, M.C. (2005) Blood island formation: longstanding observations and modern interpretations, Exp. Hematol., 33, 1041–1047, doi: 10.1016/j.exphem.2005.06.006.
35. Ferkowicz, M.J., Starr, M., Xie, X., Li, W., Johnson, S.A., Shelley, W.C., Morrison, P.R., and Yoder, M.C. (2003) CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo, Development, 130, 4393–4403.
36. Padron-Barthe, L., Temino, S., Villa del Campo, C., Carramolino, L., Isern, J., and Torres, M. (2014) Clonal analysis identifies hemogenic endothelium as the source of the blood-endothelial common lineage in the mouse embryo, Blood, 124, 2523–2532, doi: 10.1182/blood-2013-12-545939.
37. Shivdasani, R.A., Mayer, E.L,, and Orkin, S.H. (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL, Nature, 373, 432–434, doi: 10.1038/373432a0.
38. Robb, L., Lyons, I., Li, R., Hartley, L., Kontgen, F., Harvey, R.P., Metcalf, D., and Begley, C.G. (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene, Proc. Natl. Acad. Sci. USA, 92, 7075–7079.
39. Scialdone, A., Tanaka, Y., Jawaid, W., Moignard, V., Wilson, N.K., Macaulay, I.C., Marioni, J.C., and Gottgens, B. (2016) Resolving early mesoderm diversification through single-cell expression profiling, Nature, 535, 289–293, doi:10.1038/nature18633.
40. Ng, E.S., Azzola, L., Bruveris, F.F., Calvanese, V., Phipson, B., Vlahos, K., Hirst, C., Jokubaitis, V.J., Yu, Q.C., Maksimovic, J., Liebscher, S., Januar, V., Zhang, Z., Williams, B., Conscience, A., Durnall, J., Jackson, S., Costa, M., Elliott, D., Haylock, D.N., Nilsson, S.K., Saffery, R., Schenke-Layland, K., Oshlack, A., Mikkola, H.K., Stanley, E.G., and Elefanty, A.G. (2016) Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros, Nat. Biotechnol., 34, 1168–1179, doi: 10.1038/nbt.3702.
41. Kennedy, M., Awong, G., Sturgeon, C.M., Ditadi, A., LaMotte-Mohs, R., Zuniga-Pflucker, J.C., and Keller, G. (2012) T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures, Cell Rep., 2, 1722–1735, doi: 10.1016/j.celrep.2012.11.003.
42. Gao, L., Tober, J., Gao, P., Chen, C., Zhu, Q., Tan, K., and Speck, N.A. (2018) RUNX1 and the endothelial origin of blood, Exp. Hematol., 68, 2–9, doi: 10.1016/j.exphem.2018.10.009.
43. Hirai, H., Ogawa, M., Suzuki, N., Yamamoto, M., Breier, G., Mazda, O., Imanishi, J., and Nishikawa, S. (2003) Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)-1 promoter/enhancer during mouse embryogenesis, Blood, 101, 886–893, doi: 10.1182/blood-2002-02-0655.
44. Eilken, H.M., Nishikawa, S., and Schroeder, T. (2009) Continuous single-cell imaging of blood generation from haemogenic endothelium, Nature, 457, 896–900, doi: 10.1038/nature07760.
45. Chen, M.J., Yokomizo, T., Zeigler, B.M., Dzierzak, E., and Speck, N.A. (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter, Nature, 457, 887–891, doi: 10.1038/nature07619.
46. Liakhovitskaia, A., Gribi, R., Stamateris, E., Villain, G., Jaffredo, T., Wilkie, R., Gilchrist, D., Yang, J., Ure, J., and Medvinsky, A. (2009) Restoration of Runx1 expression in the Tie2 cell compartment rescues definitive hematopoietic stem cells and extends life of Runx1 knockout animals until birth, Stem Cells, 27, 1616–1624, doi: 10.1002/stem.71.
47. Li, Z., Chen, M.J., Stacy, T., and Speck, N.A. (2006) Runx1 function in hematopoiesis is required in cells that express Tek, Blood, 107, 106–110, doi: 10.1182/blood-2005-05-1955.
48. Taoudi, S., Gonneau, C., Moore, K., Sheridan, J.M., Blackburn, C.C., Taylor, E., and Medvinsky, A. (2008) Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+CD45+ pre-definitive HSCs, Cell Stem Cell, 3, 99–108, doi: 10.1016/j.stem.2008.06.004.
49. Taoudi, S., Morrison, A.M., Inoue, H., Gribi, R., Ure, J., and Medvinsky, A. (2005) Progressive divergence of definitive haematopoietic stem cells from the endothelial compartment does not depend on contact with the foetal liver, Development, 132, 4179–4191.
50. Yokota, T., Huang, J., Tavian, M., Nagai, Y., Hirose, J., Zuniga-Pflucker, J.C., Peault, B., and Kincade, P.W. (2006) Tracing the first waves of lymphopoiesis in mice, Development, 133, 2041–2051, doi: 10.1242/dev.02349.
51. Boisset, J.C., Clapes, T., Van Der Linden, R., Dzierzak, E., and Robin, C. (2013) Integrin alphaIIb (CD41) plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta, Biol. Open, 2, 525–532, doi: 10.1242/bio.20133715.
52. Bertrand, J.Y., Giroux, S., Golub, R., Klaine, M., Jalil, A., Boucontet, L., Godin, I., and Cumano, A. (2005) Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin, PNAS, 102, 134–139, doi: 10.1073/pnas.0402270102.
53. Rybtsov, S., Batsivari, A., Bilotkach, K., Paruzina, D., Senserrich, J., Nerushev, O., and Medvinsky, A. (2014) Tracing the origin of the HSC hierarchy reveals an SCF-dependent, IL-3-independent CD43– embryonic precursor, Stem Cell Reports, 3, 489–501, doi: 10.1016/j.stemcr.2014.07.009.
54. Rybtsov, S., Sobiesiak, M., Taoudi, S., Souilhol, C., Senserrich, J., Liakhovitskaia, A., Ivanovs, A., Frampton, J., Zhao, S., and Medvinsky, A. (2011) Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region, J. Exp. Med., 208, 1305–1315, doi: 10.1084/jem.20102419.
55. Liakhovitskaia, A., Rybtsov, S., Smith, T., Batsivari, A., Rybtsova, N., Rode, C., De Bruijn, M., Buchholz, F., Gordon-Keylock, S., Zhao, S., and Medvinsky, A. (2014) Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this, Development, 141, 3319–3323, doi: 10.1242/dev.110841.
56. Nakamura, Y., Ichikawa, M., Oda, H., Yamazaki, I., Sasaki, K., and Mitani, K. (2018) RUNX1-EVI1 induces dysplastic hematopoiesis and acute leukemia of the megakaryocytic lineage in mice, Leuk. Res., 74, 14–20, doi: 10.1016/j.leukres.2018.09.015.
57. Antony-Debre, I., Manchev, V.T., Balayn, N., Bluteau, D., Tomowiak, C., Legrand, C., Langlois, T., Bawa, O., Tosca, L,, Tachdjian, G., Leheup, B., Debili, N., Plo, I., Mills, J.A., French, D.L., Weiss, M.J., Solary, E., Favier, R., Vainchenker, W., and Raslova, H. (2015) Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia, Blood, 125, 930–940, doi: 10.1182/blood-2014-06-585513.
58. Zeigler, B.M., Sugiyama, D., Chen, M., Guo, Y., Downs, K.M., and Speck, N.A. (2006) The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential, Development, 133, 4183–4192, doi: 10.1242/dev.02596.
59. Nishikawa, S.I., Nishikawa, S., Kawamoto, H., Yoshida, H., Kizumoto, M., Kataoka, H., and Katsura, Y. (1998) In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos, Immunity, 8, 761–769.
60. Medvinsky, A., Rybtsov, S., and Taoudi, S. (2011) Embryonic origin of the adult hematopoietic system: advances and questions, Development, 138, 1017–1031, doi: 10.1242/dev.040998.
61. Boisset, J.C., Clapes, T., Klaus, A., Papazian, N., Onderwater, J., Mommaas-Kienhuis, M., Cupedo, T., and Robin, C. (2015) Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta, Blood, 125, 465–469, doi: 10.1182/blood-2014-07-588954.
62. Baron, M.H., Isern, J., and Fraser, S.T. (2012) The embryonic origins of erythropoiesis in mammals, Blood, 119, 4828–4837, doi: 10.1182/blood-2012-01-153486.
63. Lacaud, G., and Kouskoff, V. (2017) Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis, Exp. Hematol., 49, 19–24, doi: 10.1016/j.exphem.2016.12.009.
64. Palis, J. (2016) Hematopoietic stem cell-independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo, FEBS Lett., 590, 3965–3974, doi: 10.1002/1873–3468.12459.
65. McGrath, K.E., Koniski, A.D., Malik, J., and Palis, J. (2003) Circulation is established in a stepwise pattern in the mammalian embryo, Blood, 101, 1669–1676, doi: 10.1182/blood-2002-08-2531.
66. Palis, J., Robertson, S., Kennedy, M., Wall, C., and Keller, G. (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse, Development, 126, 5073–5084.
67. Yoder, M.C., Hiatt, K., Dutt, P., Mukherjee, P., Bodine, D.M., and Orlic, D. (1997) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac, Immunity, 7, 335–344.
68. Lin, Y., Yoder, M.C., and Yoshimoto, M. (2014) Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection, Stem Cells Dev., 23, 1168–1177, doi: 10.1089/scd.2013.0536.
69. Fraser, S.T., Ogawa, M., Yu, R.T., Nishikawa, S., Yoder, M.C., and Nishikawa, S. (2002) Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin+ population, Exp. Hematol., 30, 1070–1078.
70. Yoshimoto, M., Porayette, P., Glosson, N.L., Conway, S.J., Carlesso, N., Cardoso, A.A., Kaplan, M.H., and Yoder, M.C. (2012) Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence, Blood, 119, 5706–5714, doi: 10.1182/blood-2011-12-397489.
71. Masuda, K., Kubagawa, H., Ikawa, T., Chen, C.C., Kakugawa, K., Hattori, M., Kageyama, R., Cooper, M.D., Minato, N., Katsura, Y., and Kawamoto, H. (2005) Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors, EMBO J., 24, 4052–4060, doi: 10.1038/sj.emboj.7600878.
72. Boiers, C., Carrelha, J., Lutteropp, M., Luc, S., Green, J.C., Azzoni, E., Woll, P.S., Mead, A.J., Hultquist, A., Swiers, G., Perdiguero, E.G., Macaulay, I.C., Melchiori, L., Luis, T.C., Kharazi, S., Bouriez-Jones, T., Deng, Q., Ponten, A., Atkinson, D., Jensen, C.T., Sitnicka, E., Geissmann, F., Godin, I., Sandberg, R., de Bruijn, M.F., and Jacobsen, S.E. (2013) Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells, Cell Stem Cell, 13, 535–548, doi: 10.1016/j.stem.2013.08.012.
73. Yoshimoto, M., Montecino-Rodriguez, E., Ferkowicz, M.J., Porayette, P., Shelley, W.C., Conway, S.J., Dorshkind, K., and Yoder, M.C. (2011) Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential, PNAS, 108, 1468–1473, doi: 10.1073/pnas.1015841108.
74. Montecino-Rodriguez, E., and Dorshkind, K. (2012) B-1 B-cell development in the fetus and adult, Immunity, 36, 13–21, doi: 10.1016/j.immuni.2011.11.017.
75. Hoeffel, G., Chen, J., Lavin, Y., Low, D., Almeida, F.F., See, P., Beaudin, A.E., Lum, J., Low, I., Forsberg, E.C., Poidinger, M., Zolezzi, F., Larbi, A., Ng, L.G., Chan, J.K., Greter, M., Becher, B., Samokhvalov, I.M., Merad, M., and Ginhoux, F. (2015) C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages, Immunity, 42, 665–678, doi: 10.1016/j.immuni.2015.03.011.
76. Schulz, C., Gomez, P.E., Chorro, L., Szabo-Rogers, H., Cagnard, N., Kierdorf, K., Prinz, M., Wu, B., Jacobsen, S.E., Pollard, J.W., Frampton, J., Liu, K.J., and Geissmann, F. (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells, Science, 336, 86–90, doi: 10.1126/science.1219179.
77. Hoeffel, G., and Ginhoux, F. (2018) Fetal monocytes and the origins of tissue-resident macrophages, Cell Immunol., 330, 5–15, doi: 10.1016/j.cellimm.2018.01.001.
78. Ginhoux, F., and Guilliams, M. (2016) Tissue-resident macrophage ontogeny and homeostasis, Immunity, 44, 439–449, doi: 10.1016/j.immuni.2016.02.024.
79. Li, Z., Liu, S., Xu, J., Zhang, X., Han, D., Liu, J., Xia, M., Yi, L., Shen, Q., Xu, S., Lu, L., and Cao, X. (2018) Adult connective tissue-resident mast cells originate from late erythro-myeloid progenitors, Immunity, 49, 640–653, doi: 10.1016/j.immuni.2018.09.023.
80. Dahlin, J.S., and Hallgren, J. (2015) Mast cell progenitors: origin, development and migration to tissues, Mol. Immunol., 63, 9–17, doi: 10.1016/j.molimm.2014.01.018.
81. Gentek, R., Ghigo, C., Hoeffel, G., Bulle, M.J., Msallam, R., Gautier, G., Launay, P., Chen, J., Ginhoux, F., and Bajenoff, M. (2018) Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells, Immunity, 48, 1160–1171, doi: 10.1016/j.immuni.2018.04.025.
82. Lux, C.T., Yoshimoto, M., McGrath, K., Conway, S.J., Palis, J., and Yoder, M.C. (2008) All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac, Blood, 111, 3435–3438, doi: 10.1182/blood-2007-08-107086.
83. Wolfe, R.P., and Ahsan, T. (2013) Shear stress during early embryonic stem cell differentiation promotes hematopoietic and endothelial phenotypes, Biotechnol. Bioeng., 110, 1231–1242, doi: 10.1002/bit.24782.
84. Adamo, L., Naveiras, O., Wenzel, P.L., McKinney-Freeman, S., Mack, P.J., Gracia-Sancho, J., Suchy-Dicey, A., Yoshimoto, M., Lensch, M.W., Yoder, M.C., Garcia-Cardena, G., and Daley, G.Q. (2009) Biomechanical forces promote embryonic haematopoiesis, Nature, 459, 1131–1135, doi: 10.1038/nature08073.
85. Rybtsov, S., Ivanovs, A., Zhao, S., and Medvinsky, A. (2016) Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver, Development, 143, 1284–1289, doi: 10.1242/dev.131193.
86. Wilson, A., Laurenti, E., Oser, G., van der Wath, R.C., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C.F., Eshkind, L., Bockamp, E., Lio, P., Macdonald, H.R., and Trumpp, A. (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair, Cell, 135, 1118–1129.
87. Dzierzak, E., and Bigas, A. (2018) Blood development: hematopoietic stem cell dependence and independence, Cell Stem Cell, 22, 639–651, doi: 10.1016/j.stem.2018.04.015.
88. Samokhvalov, I.M., Samokhvalova, N.I., and Nishikawa, S. (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis, Nature, 446, 1056–1061, doi: 10.1038/nature05725.
89. Samokhvalov, I.M., Thomson, A.M., Lalancette, C., Liakhovitskaia, A., Ure, J., and Medvinsky, A. (2006) Multifunctional reversible knockout/reporter system enabling fully functional reconstitution of the AML1/Runx1 locus and rescue of hematopoiesis, Genesis, 44, 115–121, doi: 10.1002/gene.20190.
90. Tanaka, Y., Hayashi, M., Kubota, Y., Nagai, H., Sheng, G., Nishikawa, S., and Samokhvalov, I.M. (2012) Early ontogenic origin of the hematopoietic stem cell lineage, Proc. Natl. Acad. Sci. USA, 109, 4515–4520, doi: 10.1073/pnas.1115828109.
91. Gordon-Keylock, S., Sobiesiak, M., Rybtsov, S., Moore, K., and Medvinsky, A. (2013) Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs, Blood, 122, 2338–2345, doi: 10.1182/blood-2012-12-470971.
92. Cumano, A., Ferraz, J.C., Klaine, M., Di Santo, J.P., and Godin, I. (2001) Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution, Immunity, 15, 477–485.
93. Shultz, L.D., Lyons, B.L., Burzenski, L.M., Gott, B., Chen, X., Chaleff, S., Kotb, M., Gillies, S.D., King, M., Mangada, J., Greiner, D.L., and Handgretinger, R. (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rгnull mice engrafted with mobilized human hemopoietic stem cells, J. Immunol., 174, 6477–6489.
94. Arora, N., Wenzel, P.L., McKinney-Freeman, S.L., Ross, S.J., Kim, P.G., Chou, S.S., Yoshimoto, M., Yoder, M.C., and Daley, G.Q. (2014) Effect of developmental stage of HSC and recipient on transplant outcomes, Dev. Cell, 29, 621–628, doi: 10.1016/j.devcel.2014.04.013.
95. Baumann, C.I., Bailey A.S., Li, W., Ferkowicz, M.J., Yoder, M.C., and Fleming, W.H. (2004) PECAM-1 is expressed on hematopoietic stem cells throughout ontogeny and identifies a population of erythroid progenitors, Blood, 104, 1010–1016, doi: 10.1182/blood-2004-03-0989.
96. Rybtsov, S., Bilotkach, K., Velasco, J.S., and Medvinsky, A. (2013) Identification of a novel type of immature haematopoietic stem cell (HSC) precursor in mouse development, FEBS J., 280, 442–443.
97. Gekas, C., Rhodes, K.E., Van Handel, B., Chhabra, A., Ueno, M., and Mikkola, H.K. (2010) Hematopoietic stem cell development in the placenta, Int. J. Dev. Biol., 54, 1089–1098, doi: 10.1387/ijdb.103070cg.
98. Gekas, C., Dieterlen-Lievre, F., Orkin, S.H., and Mikkola, H.K. (2005) The placenta is a niche for hematopoietic stem cells, Dev. Cell, 8, 365–375, doi: 10.1016/j.devcel.2004.12.016.
99. Ottersbach, K., and Dzierzak, E. (2005) The murine placenta contains hematopoietic stem cells within the vascular labyrinth region, Dev. Cell, 8, 377–387, 10.1016/j.devcel.2005.02.001.
100. Ivanovs, A., Rybtsov, S., Anderson, R.A., and Medvinsky, A. (2014) CD43 but not CD41 marks the first hematopoietic stem cells in the human embryo, Blood, 124, 4330.
101. Ivanovs, A., Rybtsov, S., Welch, L., Anderson, R.A., Turner, M.L,, and Medvinsky, A. (2013) Highly potent human haemopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region, Lancet, 381, 11–12.
102. Vodyanik, M.A., Thomson, J.A., and Slukvin, I.I. (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures, Blood, 108, 2095–2105, doi: 10.1182/blood-2006-02-003327.
103. Kessel, K.U., Bluemke, A., Scholer, H.R., Zaehres, H., Schlenke, P., and Dorn, I. (2017) Emergence of CD43-expressing hematopoietic progenitors from human induced pluripotent stem cells, Transfus. Med. Hemother., 44, 143–150, doi: 10.1159/000477357.
104. Ivanovs, A., Rybtsov, S., Anderson, R.A., Turner, M.L., and Medvinsky, A. (2014) Identification of the niche and phenotype of the first human hematopoietic stem cells, Stem Cell Reports, 2, 449–456, doi: 10.1016/j.stemcr.2014.02.004.
105. Batsivari, A., Rybtsov, S., Souilhol, C., Binagui-Casas, A., Hills, D., Zhao, S., Travers, P., and Medvinsky, A. (2017) Understanding hematopoietic stem cell development through functional correlation of their proliferative status with the intra-aortic cluster architecture, Stem Cell Reports, 8, 1549–1562, doi: 10.1016/j.stemcr.2017.04.003.
106. Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L., and Weissman, I.L. (2001) Physiological migration of hematopoietic stem and progenitor cells, Science, 294, 1933–1936, doi: 10.1126/science.1064081.
107. McGarvey, A.C., Rybtsov, S., Souilhol, C., Tamagno, S., Rice, R., Hills, D., Godwin, D., Rice, D., Tomlinson, S.R., and Medvinsky, A. (2017) A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation, J. Exp. Med., 214, 3731–3751, doi: 10.1084/jem.20162012.
108. Taoudi, S., and Medvinsky, A. (2007) Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta, Proc. Natl. Acad. Sci. USA, 104, 9399–9403, doi: 10.1073/pnas.0700984104.
109. Souilhol, C., Gonneau, C., Lendinez, J.G., Batsivari, A., Rybtsov, S., Wilson, H., Morgado-Palacin, L., Hills, D., Taoudi, S., Antonchuk, J., Zhao, S., and Medvinsky, A. (2016) Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells, Nat. Commun., 7, 10784, doi: 10.1038/ncomms10784.
110. Gao, X., Xu, C., Asada, N., and Frenette, P.S. (2018) The hematopoietic stem cell niche: from embryo to adult, Development, 145, dev139691, doi: 10.1242/dev.139691.
111. Chou, S., and Lodish, H.F. (2010) Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells, Proc. Natl. Acad. Sci. USA, 107, 7799–7804, doi: 10.1073/pnas.1003586107.
112. Kapp, F.G., Perlin, J.R., Hagedorn, E.J., Gansner, J.M., Schwarz, D.E., O’Connell, L.A., Johnson, N.S., Amemiya, C., Fisher, D.E., Wolfle, U., Trompouki, E., Niemeyer, C.M., Driever, W., and Zon, L.I. (2018) Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche, Nature, 558, 445–448, doi: 10.1038/s41586-018-0213-0.
113. Testa, U., Labbaye, C., Castelli, G., and Pelosi, E. (2016) Oxidative stress and hypoxia in normal and leukemic stem cells, Exp. Hematol., 44, 540–560, doi: 10.1016/j.exphem.2016.04.012.
114. Suda, T., Takubo, K., and Semenza, G.L. (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche, Cell Stem Cell, 9, 298–310, doi: 10.1016/j.stem.2011.09.010.
115. Miharada, K., Karlsson, G., Rehn, M., Rorby, E., Siva, K., Cammenga, J., and Karlsson, S. (2012) Hematopoietic stem cells are regulated by Cripto, as an intermediary of HIF-1α in the hypoxic bone marrow niche, Ann. N.Y. Acad. Sci., 1266, 55–62, doi: 10.1111/j.1749-6632.2012.06564.x.
116. Wei, Q., and Frenette, P.S. (2018) Niches for hematopoietic stem cells and their progeny, Immunity, 48, 632–648, doi: 10.1016/j.immuni.2018.03.024.
117. Medvinsky, A.L., Gan, O.I., Semenova, M.L., and Samoylina, N.L. (1996) Development of day-8 colony-forming unit-spleen hematopoietic progenitors during early murine embryogenesis: spatial and temporal mapping, Blood, 87, 557–566.
118. Durand, C., Robin, C., Bollerot, K., Baron, M.H., Ottersbach, K., and Dzierzak, E. (2007) Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells, Proc. Natl. Acad. Sci. USA, 104, 20838–20843, doi: 10.1073/pnas.0706923105.
119. Durand, C., Robin, C., and Dzierzak, E. (2006) Mesenchymal lineage potentials of aorta-gonad-mesonephros stromal clones, Haematologica, 91, 1172–1179.
120. Oostendorp, R.A., Robin, C,. Steinhoff, C., Marz, S., Brauer, R., Nuber, U.A., Dzierzak, E.A., and Peschel, C. (2005) Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures, Stem Cells, 23, 842–851, doi: 10.1634/stemcells.2004-0120.
121. Oostendorp, R.A., Harvey, K.N., Kusadasi, N., de Bruijn, M.F., Saris, C., Ploemacher, R.E., Medvinsky, A.L., and Dzierzak, E.A. (2002) Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity, Blood, 99, 1183–1189.
122. Buckley, S.M., Ulloa-Montoya, F., Abts, D., Oostendorp, R.A., Dzierzak, E., Ekker, S.C., and Verfaillie, C.M. (2011) Maintenance of HSC by Wnt5a secreting AGM-derived stromal cell line, Exp. Hematol., 39, 114–123, doi: 10.1016/j.exphem.2010.09.010.
123. Robin, C., Ottersbach, K., Durand, C., Peeters, M., Vanes, L., Tybulewicz, V., and Dzierzak, E. (2006) An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells, Dev. Cell, 11, 171–180, doi: 10.1016/j.devcel.2006.07.002.
124. Ding, L., Saunders, T.L., Enikolopov, G., and Morrison, S.J. (2012) Endothelial and perivascular cells maintain haemato-poietic stem cells, Nature, 481, 457–462, doi: 10.1038/nature10783.
125. Souilhol, C., Lendinez, J.G., Rybtsov, S., Murphy, F., Wilson, H., Hills, D., Batsivari, A., Binagui-Casas, A., McGarvey, A.C., MacDonald, H.R., Kageyama, R., Siebel, C., Zhao, S., and Medvinsky, A. (2016) Developing HSCs become Notch independent by the end of maturation in the AGM region, Blood, 128, 1567–1577, doi: 10.1182/blood-2016-03-708164.
126. Fitch, S.R., Kimber, G.M., Wilson, N.K., Parker, A., Mirshekar-Syahkal, B., Gottgens, B., Medvinsky, A., Dzierzak, E., and Ottersbach, K. (2012) Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis, Cell Stem Cell, 11, 554–566, doi: 10.1016/j.stem.2012.07.002.
127. Gribi, R., Hook, L., Ure, J., and Medvinsky, A. (2006) The differentiation programme of embryonic definitive hematopoietic stem cells is largely α4 integrin independent, Blood, 108, 501–509.
128. Kim, A.G., Vrecenak, J.D., Boelig, M.M., Eissenberg, L., Rettig, M.P., Riley, J.S., Holt, M.S., Conner, M.A., Loukogeorgakis, S.P., Li, H., DiPersio, J.F., Flake, A.W., and Peranteau, W.H. (2016) Enhanced in utero allogeneic engraftment in mice after mobilizing fetal HSCs by α4β1/7 inhibition, Blood, 128, 2457–2461, doi: 10.1182/blood-2016-06-723981.
129. Hirsch, E., Iglesias, A., Potocnik, A.J., Hartmann, U., and Fassler, R. (1996) Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins, Nature, 380, 171–175, doi: 10.1038/380171a0.
130. Potocnik, A.J., Brakebusch, C., and Fassler, R. (2000) Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow, Immunity, 12, 653–663, doi: https://doi.org/10.1016/S1074-7613(00)80216-2.
131. Jiang, X., Hawkins, J.S., Lee, J., Lizama, C.O., Bos, F.L., Zape, J.P., Ghatpande, P., Peng, Y., Louie, J., Lagna, G., Zovein, A.C., and Hata, A. (2017) Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice, Nat. Commun., 8, 128, doi: 10.1038/s41467-017-00137-y.
132. Ratajczak, M.Z. (2010) Spotlight series on stem cell mobilization: many hands on the ball, but who is the quarterback? Leukemia, 24, 10, 1665–1666, doi: 10.1038/leu.2010.181.
133. Kumaravelu, P., Hook, L., Morrison, A.M., Ure, J., Zhao, S., Zuyev, S., Ansell, J., and Medvinsky, A. (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver, Development, 129, 4891–4899.
134. Ema, H., and Nakauchi, H. (2000) Expansion of hematopoietic stem cells in the developing liver of a mouse embryo, Blood, 95, 2284–2288.
135. Khan, J.A., Mendelson, A., Kunisaki, Y., Birbrair, A., Kou, Y., Arnal-Estape, A., Pinho, S., Ciero, P., Nakahara, F., Ma’ayan, A., Bergman, A., Merad, M., and Frenette, P.S. (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels, Science, 351, 176–180, doi: 10.1126/science.aad0084.
136. Chou, S., Flygare, J., and Lodish, H.F. (2013) Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells, Exp. Hematol., 41, 479–490, doi: 10.1016/j.exphem.2013.02.003.
137. Zhang, C.C., and Lodish, H.F. (2004) Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells, Blood, 103, 2513–2521, doi: 10.1182/blood-2003-08-2955.
138. Zhang, C.C., Kaba, M., Ge, G., Xie, K., Tong, W., Hug, C., and Lodish, H.F. (2006) Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells, Nat. Med., 12, 240–245, doi: 10.1038/nm1342.
139. Zhao, Y., Zhou, J., Liu, D., Dong, F., Cheng, H., Wang, W., Pang, Y., Wang, Y., Mu, X., Ni, Y., Li, Z., Xu, H., Hao, S., Wang, X., Ma, S., Wang, Q.F., Xiao, G., Yuan, W., Liu, B., and Cheng, T. (2015) ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver, Blood, 126, 2383–2391, doi: 10.1182/blood-2015-03-633354.
140. Taichman, R.S. (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche, Blood, 105, 2631–2639, doi: 10.1182/blood-2004-06-2480.
141. Boulais, P.E., and Frenette, P.S. (2015) Making sense of hematopoietic stem cell niches, Blood, 125, 2621–2629, doi: 10.1182/blood-2014-09-570192.
142. Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K., and Nagasawa, T. (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche, Immunity, 33, 387–399, doi: 10.1016/j.immuni.2010.08.017.
143. Spiegel, A., Shivtiel, S., Kalinkovich, A., Ludin, A., Netzer, N., Goichberg, P., Azaria, Y., Resnick, I., Hardan, I., Ben-Hur, H., Nagler, A., Rubinstein, M., and Lapidot, T. (2007) Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling, Nat. Immunol., 8, 1123–1131, doi: 10.1038/ni1509.
144. Garcia-Garcia, A., Korn, C., Garcia-Fernandez, M., Domingues, O., Villadiego, J., Martin-Perez, D., Isern, J., Bejarano-Garcia, J.A., Zimmer, J., Perez-Simon, J.A., Toledo-Aral, J.J., Michel, T., Airaksinen, M.S., and Mendez-Ferrer, S. (2018) Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes, Blood, doi: 10.1182/blood-2018-08-867648.
145. Pierce, H., Zhang, D., Magnon, C., Lucas, D., Christin, J.R., Huggins, M., Schwartz, G.J., and Frenette, P.S. (2017) Cholinergic signals from the CNS regulate G-CSF-mediated HSC mobilization from bone marrow via a glucocorticoid signaling relay, Cell Stem Cell, 20, 648–658, doi: 10.1016/j.stem.2017.01.002.
146. Mendez-Ferrer, S., Lucas, D., Battista, M., and Frenette, P.S. (2008) Haematopoietic stem cell release is regulated by circadian oscillations, Nature, 452, 442–447, doi: 10.1038/nature06685.
147. Maryanovich, M., Zahalka, A.H., Pierce, H., Pinho, S., Nakahara, F., Asada, N., Wei, Q., Wang, X., Ciero, P., Xu, J., Leftin, A., and Frenette, P.S. (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche, Nat. Med., 24, 782–791, doi: 10.1038/s41591-018-0030-x.