БИОХИМИЯ, 2019, том 84, вып. 2, с. 191–211

УДК 615.012.1

Компьютерный дизайн низкомолекулярных ингибиторов факторов системы свертывания крови

Обзор

© 2019 А.С. Кабанкин 1, Е.И. Синауридзе 1,2, Е.Н. Липец 1,2, Ф.И. Атауллаханов 1,2,3,4*

Центр теоретических проблем физико-химической фармакологии РАН, 119991 Москва, Россия; электронная почта: ataullakhanov.fazly@gmail.com

Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева, Министерство здравоохранения России, 117198 Москва, Россия

Московский государственный университет им. М.В. Ломоносова, физический факультет, 119991 Москва, Россия

Московский физико-технический институт, 141701 Долгопрудный Московской области Россия

Поступила в редакцию 05.09.2018
После доработки 19.10.2018
Принята к публикации 19.10.2018

DOI: 10.1134/S0320972519020039

КЛЮЧЕВЫЕ СЛОВА: антикоагулянты, низкомолекулярные ингибиторы, факторы свертывания крови, компьютерный дизайн ингибиторов, молекулярный докинг.

Аннотация

Представлен обзор основных подходов к поиску новых низкомолекулярных ингибиторов факторов свертывания крови IIa, Xa, IXa и XIa, а также результаты этого поиска, проведенного с 2015 по 2018 г. Для каждого из перечисленных факторов за последнее время найдено по несколько ингибиторов с IC50 менее 10 нМ. Некоторые из них находятся на стадии клинических испытаний. Однако ни одно из этих соединений не подходит на роль «идеального» антикоагулянта, поэтому дальнейший поиск таких ингибиторов является актуальной задачей.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа поддержана грантом по программе фундаментальных исследований Президиума РАН «Фундаментальные основы технологии физиологических адаптаций», раздел «Новые ингибиторы тромбина» — грантом РНФ 16-14-00224.

Конфликт интересов

Авторы работы декларируют отсутствие конфликта интересов.

Список литературы

1. Пантелеев М.А., Атауллаханов Ф.И. (2008) Свертывание крови: биохимические основы, Клиническая онкогематология, 1, 50–62.

2. Пантелеев М.А., Васильев С.А., Синауридзе Е.И., Воробьев А.И., Атауллаханов Ф.И. (2012) Практическая коагуология, Практическая медицина, Москва.

3. Пантелеев М., Котова Я., Токарев А. (2008) Механизмы регуляции свертывания крови, Терапевтический архив, 7, 88–91.

4. Sinauridze, E.I., Panteleev, M.A., and Ataullakhanov, F.I. (2012) Anticoagulant therapy: basic principles, classic approaches and recent developments, Blood Coagul. Fibrinolysis, 23, 482–493.

5. Broussalis, E., Anna, W., Trinka, E., Mutzenbach, S., and Killer, M. (2014) Latest developments in anticoagulant drug discovery, Drug Discov. Today, 19, 921–935.

6. Ahrens, I., Peter, K., Lip, G.Y.H., and Bode, C. (2012) Development and clinical applications of novel oral anticoagulants. Part I. Clinically approved drugs, Discov. Med., 13, 433–443.

7. Roca, B., and Roca, M. (2015) The new oral anticoagulants: reasonable alternatives to warfarin, Cleve Clin. J. Med., 82, 847–854.

8. Adcock, D.M., and Gosselin, R. (2015) Direct oral anticoagulants (DOACs) in the laboratory: 2015 review, Thromb. Res., 136, 7–12.

9. Mekaj, Y.H., Mekaj, A.Y., Duci, S.B., and Miftari, E.I. (2015) New oral anticoagulants: their advantages and disadvantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events, Ther. Clin. Risk. Manag., 11, 967–977.

10. Gomez-Outes, A., Suarez-Gea, M.L., Lecumberri, R., Terleira-Fernandez, A.I., and Vargas-Castrillon, E. (2015) Direct-acting oral anticoagulants: pharmacology, indications, management, and future perspectives, Eur. J. Haematol., 95, 389–404.

11. Синауридзе Е., Вуймо Т., Атауллаханов Ф. (2017) Дабигатран этексилат: новый антикоагулянт для перорального введения, Вопросы гематологии/онкологии и иммунологии в педиатрии, 16, 1–15.

12. Joppa, S.A., Salciccioli, J., Adamski, J., Patel, S., Wysokinski, W., McBane, R., Al-Saffar, F., Esser, H., and Shamoun, F. (2018) A practical review of the emerging direct anticoagulants, laboratory monitoring, and reversal agents, J. Clin. Med., 7, 29.

13. Pollack, C.V., Reilly, P.A., van Ryn, J., Eikelboom, J.W., Glund, S., Bernstein, R.A., Dubiel, R., Huisman, M.V., Hylek, E.M., Kam, C.W., Kamphuisen, P.W., Kreuzer, J., Levy, J.H., Royle, G., Sellke, F.W., Stangier, J., Steiner, T., Verhamme, P., Wang, B., Young, L., and Weitz, J.I. (2017) Idarucizumab for dabigatran reversal — full cohort analysis, N. Engl. J. Med., 377, 431–441.

14. Hung, C.-L., and Chen, C.-C. (2014) Computational approaches for drug discovery, Drug Dev. Res., 75, 412–418.

15. Lill, M. (2013) Virtual screening in drug design, Methods Mol. Biol., 993, 1–12.

16. Baron, R. (Ed.) (2012) Computational drug discovery and design, Springer New York, NY.

17. Хельтье Х.-Д., Зиппль В., Роньян Д., Фолькерс Г. (2015) Молекулярное моделирование. Теория и практика, БИНОМ. Лаборатория знаний, Москва.

18. De Ruyck, J., Brysbaert, G., Blossey, R., and Lensink, M.F. (2016) Molecular docking as a popular tool in drug design, an in silico travel, Adv. Appl. Bioinform. Chem., 9, 1–11.

19. Chen, Y.-C. (2015) Beware of docking! Trends Pharmacol. Sci., 36, 78–95.

20. Сулимов В.Б., Сулимов А.В. (2017) Докинг: молекулярное моделирование для разработки лекарств, ИИнтелл, Москва, 348 с.

21. Klimovich, P.V., Shirts, M.R., and Mobley, D.L. (2015) Guidelines for the analysis of free energy calculations, J. Comput. Aided. Mol. Des., 29, 397–411.

22. Sulimov, A.V, Kutov, D.C., Katkova, E.V, Ilin, I.S., and Sulimov, V.B. (2017) New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking, J. Mol. Graph. Model., 78, 139–147.

23. Раевский О. (2013) Свойства химических соединений и лекарств как функции их структуры, Добрсовет, КДУ, Москва.

24. Раевский О. (2015) Моделирование соотношений «структура–свойство», Добрсовет, КДУ, Москва.

25. Филимонов Д., Поройков В. (2006) Прогноз спектра биологической активности органических соединений, Российский химический журнал, 50, 66–75.

26. Поройков В., Филимонов Д., Глориозова Т., Лагунин А., Дружиловский Д., Степанчикова А. (2009) Компьютерное предсказание биологической активности химических веществ: виртуальная хемогеномика, Информационный вестник ВОГиС, 13, 137–142.

27. Филимонов Д.А., Лагунин А.А., Глориозова Т.А., Рудик А.В., Дружиловский Д.С., Погодин П.В., Поройков В.В. (2014) Предсказание спектров биологической активности органических соединений с помощью веб-ресурса PASS Online, Химия гетероциклических соединений, 3, 483–499.

28. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 46, 3–26.

29. Shen, J., Cheng, F., Xu, Y., Li, W., and Tang, Y. (2010) Estimation of ADME properties with substructure pattern recognition, J. Chem. Inf. Model., 50, 1034–1041.

30. Khakar, P.S. (2010) Two-dimensional (2D) in silico models for absorption, distribution, metabolism, excretion and toxicity (ADME/T) in drug discovery, Curr. Top. Med. Chem., 10, 116–126.

31. Kujawski, J., Bernard, M.K., Janusz, A., and Kuzma, W. (2012) Prediction of log P?: ALOGPS application in medicinal chemistry education, J. Chem. Educ., 89, 64–67.

32. Matter, H., and Schmider, W. (2006) In-silico ADME modelling. in Drug discovery and evaluation, safety and pharmacokinetic assays (Vogel, H.G. ed.), Springer, Heidelberg, pp. 409–436.

33. Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., and Jiang, H. (2015) In silico ADME/T modelling for rational drug design, Q Rev. Biophys., 48, 488–515.

34. Obst, U., Banner, D.W., Weber, L., and Diederich, F. (1997) Molecular recognition at the thrombin active site: structure-based design and synthesis of potent and selective thrombin inhibitors and the X-ray crystal structures of two thrombin-inhibitor complexes., Chem. Biol., 4, 287–295.

35. Kong, Y., Chen, H., Wang, Y.-Q., Meng, L., and Wei, J.-F. (2014) Direct thrombin inhibitors: patents 2002-2012 (Review), Mol. Med. Rep., 9, 1506–1514.

36. He, L.-W., Dai, W.-C., and Li, N.-G. (2015) Development of orally active thrombin inhibitors for the treatment of thrombotic disorder diseases, Molecules, 20, 11046–11062.

37. Mena-Ulecia, K., Tiznado, W., and Caballero, J. (2015) Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM-GBSA, PLoS One, 10, e0142774. doi: 10.1371/journal.pone.0142774.

38. Lu, T., Tomczuk, B., Illig, C.R., Bone, R., Murphy, L., Spurlino, J., Salemme, F.R., and Soll, R.M. (1998) In vitro evaluation and crystallographic analysis of a new class of selective, non-amide-based thrombin inhibitors, Bioorg. Med. Chem. Lett., 8, 1595–1600.

39. Sinauridze, E.I., Romanov, A.N., Gribkova, I.V, Kondakova, O.A., Surov, S.S., Gorbatenko, A.S., Butylin, A.A., Monakov, M.Y., Bogolyubov, A.A., Kuznetsov, Y.V, Sulimov, V.B., and Ataullakhanov, F.I. (2011) New synthetic thrombin inhibitors: molecular design and experimental verification, PLoS One, 6, e19969, doi: 10.1371/journal.pone.0019969.

40. Hagmann, W. K. (2008) The many roles for fluorine in medicinal chemistry, J. Med. Chem., 51, 4359–4369.

41. Li, M., and Ren, Y. (2015) Synthesis and biological evaluation of some new 2,5-substituted 1-ethyl-1H-benzoimidazole fluorinated derivatives as direct thrombin inhibitors, Arch. Pharm. (Weinheim), 348, 353–365.

42. Chen, H., and Ren, Y. (2015) Design, synthesis, and anti thrombotic evaluation of some novel fluorinated thrombin inhibitor derivatives, Arch. Pharm. (Weinheim), 348, 408–420.

43. Chen, D., Wang, S., Diao, X., Zhu, Q., Shen, H., Han, X., Wang, Y., Gong, G., and Xu, Y. (2015) Design, synthesis and antithrombotic evaluation of novel dabigatran etexilate analogs, a new series of non-peptides thrombin inhibitors, Bioorg. Med. Chem., 23, 7405–7416.

44. Chen, D., Shi, J., Liu, J., Zhang, X., Deng, X., Yang, Y., Cui, S., Zhu, Q., Gong, G., and Xu, Y. (2017) Design, synthesis and antithrombotic evaluation of novel non-peptide thrombin inhibitors, Bioorg. Med. Chem., 25, 458–470.

45. Lee, W., Lee, S., Choi, J., Park, J.-H., Kim, K.-M., Jee, J.-G., and Bae, J.-S. (2017) Antithrombotic properties of JJ1, a potent and novel thrombin inhibitor, Sci. Rep., 7, 14862, doi: 10.1038/s41598-017-13868-1.

46. Wang, X., Zhang, Y., Yang, Y., Wu, X., Fan, H., and Qiao, Y. (2017) Identification of berberine as a direct thrombin inhibitor from traditional Chinese medicine through structural, functional and binding studies, Sci. Rep., 7, 44040, doi: 10.1038/srep44040.

47. Levy, J.H., Spyropoulos, A.C., Samama, C.M., and Douketis, J. (2014) Direct oral anticoagulants: new drugs and new concepts, JACC Cardiovasc. Interv., 7, 1333–1351.

48. Patel, N.R., Patel, D.V, Murumkar, P.R., and Yadav, M.R. (2016) Contemporary developments in the discovery of selective factor Xa inhibitors: a review, Eur. J. Med. Chem., 121, 671–698.

49. Sulimov, V.B., Gribkova, I.V, Kochugaeva, M.P., Katkova, E.V, Sulimov, A.V, Kutov, D.C., Shikhaliev, K.S., Medvedeva, S.M., Krysin, M.Y., Sinauridze, E.I., and Ataullakhanov, F.I. (2015) Application of molecular modeling to development of new factor Xa inhibitors, Biomed Res. Int., 120802, doi: 10.1155/2015/120802.

50. Yang, J., Su, G., Ren, Y., and Chen, Y. (2015) Synthesis of 3,4-diaminobenzoyl derivatives as factor Xa inhibitors, Eur. J. Med. Chem., 101, 41–51.

51. Ishihara, T., Koga, Y., Iwatsuki, Y., and Hirayama, F. (2015) Identification of potent orally active factor Xa inhibitors based on conjugation strategy and application of predictable fragment recommender system, Bioorg. Med. Chem., 23, 277–289.

52. Xu, C., and Ren, Y. (2015) Molecular modeling studies of [6,6,5] tricyclic fused oxazolidinones as fXa inhibitors using 3D-QSAR, topomer CoMFA, molecular docking and molecular dynamics simulations, Bioorg. Med. Chem. Lett., 25, 4522–4528.

53. Wang, Y., Sun, X., Yang, D., Guo, Z., Fan, X., Nie, M., Zhang, F., Liu, Y., Li, Y., Wang, Y., Gong, P., and Liu, Y. (2016) Design, synthesis, and structure-activity relationship of novel and effective apixaban derivatives as FXa inhibitors containing 1,2,4-triazole/pyrrole derivatives as P2 binding element, Bioorg. Med. Chem., 24, 5646–5661.

54. Xing, J., Yang, L., Yang, Y., Zhao, L., Wei, Q., Zhang, J., Zhou, J., and Zhang, H. (2017) Design, synthesis and biological evaluation of novel 2,3-dihydroquinazolin-4(1H)-one derivatives as potential fXa inhibitors, Eur. J. Med. Chem., 125, 411–422.

55. Pu, Y., Liu, H., Zhou, Y., Peng, J., Li, Y., Li, P., Li, Y., Liu, X., and Zhang, L. (2017) In silico discovery of novel FXa inhibitors by pharmacophore modeling and molecular docking, Nat. Products Bioprospect., 7, 249–256.

56. Lagos, C.F., Segovia, G.F., Nunez-Navarro, N., Faundez, M.A., and Zacconi, F.C. (2017) Novel FXa inhibitor identification through integration of ligand- and structure-based approaches, Molecules, 22, pii: E1588, doi: 10.3390/molecules22101588.

57. Sun, X., Hong, Z., Liu, M., Guo, S., Yang, D., Wang, Y., Lan, T., Gao, L., Qi, H., Gong, P., and Liu, Y. (2017) Design, synthesis, and biological activity of novel tetrahydropyrazolopyridone derivatives as FXa inhibitors with potent anticoagulant activity, Bioorg. Med. Chem., 25, 2800–2810.

58. Wang, W., Yuan, J., Fu, X., Meng, F., Zhang, S., Xu, W., Xu, Y., and Huang, C. (2016) Novel anthranilamide-based FXa inhibitors: drug design, synthesis and biological evaluation, Molecules, 21, doi: 10.3390/molecules21040491.

59. Hu, X., Xiao, Y., Yu, C., Zuo, Y., Yang, W., Wang, X., Gu, B., and Li, J. (2018) Characterization of a novel selective factor Xa inhibitor, DJT06001, which reduces thrombus formation with low risk of bleeding, Eur. J. Pharmacol., 825, 85–91.

60. Smiley, D.A., and Becker, R.C. (2014) Factor IXa as a target for anticoagulation in thrombotic disorders and conditions, Drug Discov. Today, 19, 1445–1453.

61. Choudhari, P., and Bhatia, M. (2012) 3D QSAR, pharmacophore identification studies on series of 4-substituted benzothiophene analogs as factor IXa inhibitors, Pharmacophore, 3, 189–198.

62. Wang, S., Beck, R., Blench, T., Burd, A., Buxton, S., Malic, M., Ayele, T., Shaikh, S., Chahwala, S., Chander, C., Holland, R., Merette, S., Zhao, L., Blackney, M., and Watts, A. (2010) Studies of benzothiophene template as potent factor IXa (FIXa) inhibitors in thrombosis, J. Med. Chem., 53, 1465–1472.

63. Wang, S., Beck, R., Burd, A., Blench, T., Marlin, F., Ayele, T., Buxton, S., Dagostin, C., Malic, M., Joshi, R., Barry, J., Sajad, M., Cheung, C., Shaikh, S., Chahwala, S., Chander, C., Baumgartner, C., Holthoff, H.P., Murray, E., Blackney, M., and Giddings, A. (2010) Structure based drug design: development of potent and selective factor IXa (FIXa) inhibitors, J. Med. Chem., 53, 1473–1482.

64. Parker, D.L. Jr., Walsh, S., Li, B., Kim, E., and Sharipour, A., Smith, C., Chen, Y.H., Berger, R., Harper, B., Zhang, T., Park, M., Shu, M.,Wu, J., Xu, J., Dewnani, S., Sherer, E.C., Hruza, A., Reichert, P., Geissler, W., Sonatore, L., Ellsworth, K., Balkovec, J., Greenlee, W., and Wood, H.B. (2015) Rapid development of two factor IXa inhibitors from hit to lead, Bioorg. Med. Chem. Lett., 25, 2321–2325.

65. Zhang, T., Andre, P., Bateman, T. J., Chen, Y.-H., and Desai, K., Ellsworth, K., Geissler, W.M., Guo, L.,Hruza, A., Jian, T., Meng, D., Parker, D.L., Jr., Qian, X., et al. (2015) Development of a novel class of potent and selective FIXa inhibitors, Bioorg. Med. Chem. Lett., 25, 4945–4949.

66. Meng, D., Andre, P., Bateman, T.J., Berger, R., and Chen, Y.H., Desai K2, Dewnani, S., Ellsworth, K., Feng, D., Geissler, W.M., Guo, L., Hruza, A., Jian, T., Li, H., et al. (2015) Development of a novel tricyclic class of potent and selective FIXa inhibitors, Bioorg. Med. Chem. Lett., 25, 5437–5443.

67. Gao, J.-S., Tong, X.-P., Chang, Y.-Q., He, Y.-X., Mei, Y.-D., Tan, P.-H., Guo, J.-L., Liao, G.-C., Xiao, G.-K., Chen, W.-M., Zhou, S.-F., and Sun, P.-H. (2015) Design and prediction of new anticoagulants as a selective Factor IXa inhibitor via three-dimensional quantitative structure-property relationships of amidinobenzothiophene derivatives, Drug Des. Devel. Ther., 9, 1743–1759.

68. Zhang, T., Liu, Y., Yang, X., Martin, G.E., Yao, H., Shang, J., Bugianesi, R.M., Ellsworth, K.P., Sonatore, L.M., Nizner, P., Sherer, E.C., Hill, S.E., Knemeyer, I.W., Geissler, W.M., Dandliker, P.J., Helmy, R., and Wood, H.B. (2016) Definitive metabolite identification coupled with automated ligand identification system (ALIS) technology: a novel approach to uncover structure–activity relationships and guide drug design in a factor IXa inhibitor program, J. Med. Chem., 59, 1818–1829.

69. Sakurada, I., Endo, T., Hikita, K., Hirabayashi, T., Hosaka, Y., Kato, Y., Maeda, Y., Matsumoto, S., Mizuno, T., Nagasue, H., Nishimura, T., Shimada, S., et al. (2017) Discovery of novel aminobenzisoxazole derivatives as orally available factor IXa inhibitors, Bioorg. Med. Chem. Lett., 27, 2622–2628.

70. Bane, C.E., and Gailani, D. (2014) Factor XI as a target for antithrombotic therapy, Drug Discov. Today, 19, 1454–1458.

71. Al-Horani, R.A., and Desai, U.R. (2016) Factor XIa inhibitors: a review of the patent literature, Expert. Opin. Ther. Pat., 26, 323–345.

72. Corte, J.R., Fang, T., Hangeland, J.J., Friends, T.J., Rendina, A.R., Luettgen, J.M., Bozarth, J.M., Barbera, F.A., Rossi, K.A., Wei, A., Ramamurthy, V., Morin, P.E., Seiffert, D.A., Wexler, R.R., and Quan, M.L. (2015) Pyridine and pyridinone-based factor XIa inhibitors, Bioorg. Med. Chem. Lett., 25, 925–930.

73. Pinto, D.J.P., Smallheer, J.M., Corte, J.R., Austin, E.J.D., and Wang, C., et al. (2015) Structure-based design of inhibitors of coagulation factor XIa with novel P1 moieties, Bioorg. Med. Chem. Lett., 25, 1635–1642.

74. Smith, L.M., Orwat, M.J., Hu, Z., Han, W., and Wang, C., et al. (2016) Novel phenylalanine derived diamides as factor XIa inhibitors, Bioorg. Med. Chem. Lett., 26, 472–478.

75. Corte, J.R., Fang, T., Pinto, D.J.P.P., Orwat, M.J., Rendina, A.R., Luettgen, J.M., Rossi, K.A., Wei, A., Ramamurthy, V., Myers, J.E., Sheriff, S., Narayanan, R., Harper, T.W., Zheng, J.J., Li, Y.-X.X., Seiffert, D.A., Wexler, R.R., and Quan, M.L. (2016) Orally bioavailable pyridine and pyrimidine-based factor XIa inhibitors: discovery of the methyl N-phenyl carbamate P2 prime group, Bioorg. Med. Chem., 24, 2257–2272.

76. Obaidullah, A.J., and Al-Horani, R.A. (2017) Discovery of chromen-7-yl furan-2-carboxylate as a potent and selective factor XIa inhibitor, Cardiovasc. Hematol. Agents Med. Chem., 15, 40–48.

77. Pinto, D.J.P., Orwat, M.J., Smith, L.M., 2nd, Quan, M.L., Lam. P.Y.S., et al. (2017) Discovery of a parenteral small molecule coagulation factor XIa inhibitor clinical candidate (BMS-962212), J. Med. Chem., 60, 9703–9723.

78. Corte, J.R., Fang, T., Osuna, H., Pinto, D.J.P., Rossi, K.A., Myers, J.E., Sheriff, S., Lou, Z., Zheng, J.J., Harper, T.W., Bozarth, J.M., Wu, Y., Luettgen, J.M., Seiffert, D.A., Decicco, C.P., Wexler, R.R., and Quan, M.L. (2017) Structure-based design of macrocyclic factor XIa inhibitors: discovery of the macrocyclic amide linker, J. Med. Chem., 60, 1060–1075.

79. Wang, C., Corte, J.R., Rossi, K.A., Bozarth, J.M., Wu, Y., Sheriff, S., Myers, J.E., Luettgen, J.M., Seiffert, D.A., Wexler, R.R., and Quan, M.L. (2017) Macrocyclic factor XIa inhibitors, Bioorg. Med. Chem. Lett., 27, 4056–4060.

80. Hu, Z., Wang, C., Han, W., Rossi, K.A., Bozarth, J.M., Wu, Y., Sheriff, S., Myers, J.E., Luettgen, J.M., Seiffert, D.A., Wexler, R.R., and Quan, M.L. (2018) Pyridazine and pyridazinone derivatives as potent and selective factor XIa inhibitors, Bioorg. Med. Chem. Lett., 28, 987–992.

81. Neves, A.R., Correia-da-Silva, M., Sousa, E., and Pinto, M. (2016) Structure-activity relationship studies for multitarget antithrombotic drugs, Future Med. Chem., 8, 2305–2355.