БИОХИМИЯ, 2019, том 84, вып. 1, с. 24–37

УДК 577.29

Использование системы CRISPR/Cas для создания растений, устойчивых к патогенам*

Обзор

© 2019 С.С. Макарова 1,2, А.В. Хромов 1,2, Н.А. Спеченкова 3, М.Э. Тальянский 1,3, Н.О. Калинина 1,2,3**

ООО «Дока-Генные технологии», 141880, Московская область, Дмитровский район, Рогачево, Россия; электронная почта: mail@dokagene.ru

Московский государственный университет им. М.В. Ломоносова, 119991 Москва, Россия; электронная почта: kalinina@genebee.msu.ru

Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН, 117997 Москва, Россия; электронная почта: office@ibch.ru

Поступила в редакцию 11.07.2018
После доработки 07.09.2018
Принята к публикации 07.09.2018

DOI: 10.1134/S0320972519010020

КЛЮЧЕВЫЕ СЛОВА: растения, система CRISPR/Cas, редактирование генома, вирусы растений, бактерии, грибы, устойчивость к инфекции патогенами.

Аннотация

Использование прокариотической адаптивной иммунной системы CRISPR/Cas9 привело к настоящему прорыву в направленном редактировании генома эукариот. Технология CRISPR/Cas9 позволяет получать организмы с заданными свойствами путем внесения делеций или вставок в выбранные участки генома, что приводит к «выключению» или модификации целевых генов. Настоящий обзор посвящен современному состоянию применения приложений на основе CRISPR/Cas для создания растений, устойчивых к вирусам, бактериям и паразитическим грибам. Резистентность к заражению ДНК- и РНК-содержащими вирусами достигалась получением трансгенных растений, экспрессирующих ген эндонуклеазы Cas и последовательностей коротких гидовых РНК, нацеленных на определенные участки генома вируса или гены растения-хозяина. Подобные подходы приводили или к прямому разрезанию генома вируса, или модификации генома растения, которая снижала эффективность репликации вируса. Редактирование генов растений, участвующих в защитном ответе на заражение патогенами, усиливало резистентность растений к бактериям и патогенному грибу. В обзоре обсуждены стратегии и перспективы создания растений, устойчивых к патогенам, и способы получения растений, которые не являются генно-модифицированными организмами, в частности, бесплазмидные способы доставки в клетки растений редактирующего комплекса эндонуклеаза Cas/короткая гидовая РНК.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Статья на английском языке опубликована в томе 83, вып. 12, 2018.

** Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке РНФ (проект № 16-16-04019).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

1. Palukaitis, P., Groen, S.C., and Carr, J.P. (2013) The Rumsfeld paradox: some of the things we know that we don’t know about plant virus infection, Curr. Opin. Plant Biol., 16, 513–519.

2. FAO, WFP, IFAD (2012) The state of food insecurity in the world 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome.

3. Sudarshana, M.R., Roy, G., and Falk, B.W. (2007) Methods for engineering resistance to plant viruses, Plant-Path. Inter. Methods Mol. Biol., 354, 183–195.

4. Reddy, D.V.R., Sudarshana, M.R., Fuchs, M., Rao, N.C., and Thottappilly, G. (2009) Genetically engineered virus-resistant plants in developing countries: current status and future prospects, Adv. Virus Res., 75, 185–220.

5. Palukaitis, P. (2012) Resistance to viruses of potato and their vectors, Plant Pathol., 28, 248–258.

6. Arif, M., Azhar, U., Arshad, M., Zafar, Y., Mansoor, S., and Asad, S. (2012) Engineering broad-spectrum resistance against RNA viruses in potato, Transgen. Res., 21, 303–311.

7. Wright, A.V., Nunez, J.K., and Doudna, J.A. (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering, Cell, 164, 29–44.

8. Shmakov, S.A., Sitnik, V., Makarova, K.S., Wolf, Y.I., Severinov, K.V., and Koonin, E.V. (2017) The CRISPR spacer space is dominated by sequences from species-specific mobilomes, MBio, 8, e01397-17.

9. Weeks, D.P., Spalding, M.H., and Yang, B. (2016) Use of designer nucleases for targeted gene and genome editing in plants, Plant Biotech., 14, 483–495.

10. Mohanta, T.K., Bashir, T., Hashem, A., Abd-Allah, E.F., and Bae, H. (2017) Genome editing tools in plants, Genes, 8, 399.

11. Dominguez, A.A., Lim, W.A., and Qi, L.S. (2016) Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation, Nat. Rev. Mol. Cell Biol., 17, 5.

12. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. (2007) CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709–1712.

13. Chaparro-Garcia, A., Kamoun, S., and Nekrasov, V. (2015) Boosting plant immunity with CRISPR/Cas, Gen. Biol., 16, 254.

14. Zaidi, S.S.E.A., Mansoor, S., Ali, Z., Tashkandi, M., and Mahfouz, M. M. (2016) Engineering plants for geminivirus resistance with CRISPR/Cas9 system, Trends Plant Sci., 21, 279–281.

15. Khatodia, S., Bhatotia, K., and Tuteja, N. (2017) Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops, Bioengineered, 8, 274–279.

16. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems, Science, 1231143.

17. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity, Science, 1225829.

18. Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., and Joung, J.K. (2014) Improving CRISPR–Cas nuclease specificity using truncated guide RNAs, Nat. Biotech., 32, 279–284.

19. Pattanayak, V., Lin, S., Guilinger, J.P., Ma, E., Doudna, J.A., and Liu, D.R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity, Nat. Biotech., 31, 839–843.

20. Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S., and Kim, J.S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases, Genome Res., 24, 132–141.

21. Andersson, M., Turesson, H., Olsson, N., Falt, A.S., Ohlsson, P., Gonzalez, M.N., Samuelsson, M., and Hofvander, P. (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery, Physiol. Plant., 1, 12731.

22. Liang, Z., Chen, K., Li, T., Zhang, Y., and Wang, Y. (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes, Nat. Commun., 8, 14261.

23. Ji, X., Zhang, H., Zhang, Y., Wang, Y., and Gao, C. (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants, Nat. Plants, 1, 15144.

24. Baltes, N.J., Hummel, A.W., Konecna, E., Cegan, R., Bruns, A.N., Bisaro, D.M., and Voytas, D.F. (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system, Nat. Plants, 1, 15145.

25. Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., and Mahfouz, M.M. (2015) CRISPR/Cas9-mediated viral interference in plants, Gen. Biol., 16, 238.

26. Ali, Z., Ali, S., Tashkandi, M., Zaidi, S.S.E.A., and Mahfouz, M.M. (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion, Sci. Rep., 6, 26912.

27. Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., and Mahfouz, M.M. (2018) Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato BioRxiv, doi: https://doi.org/10.1101/237735.

28. Sampson, T.R., Saroj, S.D., Llewellyn, A.C., Tzeng, Y.L., and Weiss, D.S. (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence, Nature, 497, 254.

29. O’Connell, M.R., Oakes, B.L., Sternberg, S.H., East-Seletsky, A., Kaplan, M., and Doudna, J.A. (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9, Nature, 516, 263.

30. Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S., and Zhou, G. (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system, Plant Biotech., 1, 1415–1423.

31. Abudayyeh, O., Gootenberg, J., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E.S., Koonin, E.V., and Zhang, F. (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science, 353, 5573.

32. Abudayyeh, O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., Lander, E.S., Voytas, D.F., Ting, A.Y., and Zhang, F. (2017) RNA targeting with CRISPR–Cas13, Nature, 550, 280.

33. Robaglia, C., and Caranta, C. (2006) Translation initiation factors: a weak link in plant RNA virus infection, Trends Plant Sci., 11, 40–45.

34. Estevan, J., Marena, A., Callot, C., Lacombe, S., Moretti, A., Caranta, C., and Gallois, J.-L. (2014) Specific requirement for translation initiation factor 4E or its isoform drives plant host susceptibility to Tobacco etch virus, BMC Plant Biol., 14, 67.

35. Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and Gal-On, A. (2016) Development of broad virus resistance in nontransgenic cucumber using CRISPR/Cas9 technology, Mol. Plant Pathol., 17, 1140–1153.

36. Pyott, D.E., Sheehan, E., and Molnar, A. (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants, Mol. Plant Pathol., 17, 1276–1288.

37. Jones, H.D. (2015) Regulatory uncertainty over genome editing, Nat. Plants, 1, 14011.

38. Sprink, T., Eriksson, D., Schiemann, J., and Hartung, F. (2016) Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts, Plant Cell Rep., 35, 1493–1506.

39. Kanchiswamy, C.N. (2016) DNA-free genome editing methods for targeted crop improvement, Plant Cell Rep., 35, 1469–1474.

40. Kanchiswamy, C.N., Malnoy, M., Velasco, R., Kim, J.S., and Viola, R. (2015) Non-GMO genetically edited crop plants, Trends Biotech., 33, 489–491.

41. Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K., and Cigan, M. (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes, Nat. Comm., 7, 13274.

42. Martin-Ortigosa, S., Peterson, D.J., Valenstein, J.S., Lin, V.S.Y., Trewyn, B.G., Lyznik, L.A., and Wang, K. (2013) Mesoporous silica nanoparticle mediated intracellular Cre protein delivery for maize genome editing via loxP sites excision, Plant Phys., 233650.

43. Woo, J.W., Kim, J., Kwon, S.I., Corvalan, C., Cho, S.W., Kim, H., and Corvalan, C. (2015) DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleo-proteins, Nat. Biotech., 33, 1162.

44. Liang, G., Zhang, H., Lou, D., and Yu, D. (2016). Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing, Sci. Rep., 6, 21451.

45. Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., Yao, L., and Zou, X. (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus, Plant Biotech., 15, 1509–1519.

46. Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.G., and Zhao, K. (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922, PLoS One, 11, e0154027.

47. Liu, D., Chen, X., Liu, J., Ye, J., and Guo, Z. (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance, J. Exp. Bot., 63, 3899–3911.

48. Knott, G.J., and Doudna, J.A. (2018) CRISPR–Cas guides the future of genetic engineering, Science, 361, 866–869.

49. Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft D.H., Horvath, P., Moineau, S., Mojica, F.J.M., Terns, R.M., Terns, M.P., White, M.F., Yakunin, A.F., Garrett, R.A., van der Oost, J., Backofen, R., and Koonin, E.V. (2015) An updated evolutionary classification of CRISPR–Cas systems, Nat. Rev. Microbiol., 13, 722–736.

50. Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O.O., Gootenberg, J.S., Makarova, K.S., Wolf, Y.I., Severinov, K., Zhang, F., and Koonin, E.V. (2017) Diversity and evolution of class 2 CRISPR–Cas systems, Nat. Rev. Microbiol., 15, 169–182.

51. Koonin, E.V., Makarova, K.S., and Zhang, F. (2017) Diversity, classification and evolution of CRISPR-Cas systems, Curr. Opin. Microbiol., 37, 67–78.

52. Murugan, K., Babu, K., Sundaresan, R., Rajan, R., and Sashital, D.G. (2017) The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit, Mol. Cell, 68, 15–25.

53. Hsu, P.D., Lander, E.S., and Zhang, F. (2014) Development and applications of CRISPR–Cas9 for genome engineering, Cell, 157, 1262–1278.

54. Sternberg, S.H., Richter, H., Charpentier, E., and Qimron, U. (2016) Adaptation in CRISPR–Cas systems, Mol. Cell, 61, 797–808.

55. Wang, A. (2015) Dissecting the molecular network of virus-plant interactions: the complex roles of host factors, Ann. Rev. Phytopath., 53, 45–66.

56. Gill, U.S., Lee, S., and Mysore, K.S. (2015) Host versus nonhost resistance: distinct wars with similar arsenals, Phytopathology, 105, 580–587.

57. Lee, S., Whitaker, V.M., Hutton, S.F. (2016) Mini review: potential applications of non-host resistance for crop improvement, Front. Plant Sci., 7, 997.

58. Love, A.J., Yu, C., Petukhova, N.V., Kalinina, N.O., Chen, J., and Taliansky, M.E. (2017) Cajal bodies and their role in plant stress and disease responses, RNA Biol., 14, 779–790.

59. Kalinina, N.O., Makarova, S., Makhotenko, A., Love, A.J., and Taliansky, M. (2018) The multiple functions of the nucleolus in plant development, disease and stress responses, Front. Plant Sci., 9, 132.

60. Shaw, J., Love, A.J., Makarova, S.S., Kalinina, N.O., Harrison, B.D., and Taliansky, M.E. (2014) Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa, Nucleus, 5, 85–94.