БИОХИМИЯ, 2019, том 84, вып. 1, с. 3–23

УДК 612.111.11

Альтернативные и дополнительные функции эритроцитарного гемоглобина*

Обзор

© 2019 О.В. Космачевская, А.Ф. Топунов **

Институт биохимии им. А.Н. Баха, Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН, 119071 Москва, Россия; электронная почта: aftopunov@yandex.ru

Поступила в редакцию 24.04.2018
После доработки 24.07.2018
Принята к публикации 24.07.2018

DOI: 10.1134/S0320972519010019

КЛЮЧЕВЫЕ СЛОВА: гемоглобин, эритроциты, мембраносвязанный гемоглобин, оксид азота, капиллярный кровоток, пероксидазная активность, гем.

Аннотация

В обзоре описаны плейотропные эффекты эритроцитарного гемоглобина (Hb) и их значимость для здоровья человека. Гемоглобин наиболее известен как переносчик кислорода, однако его биохимические функции этим не ограничиваются. Рассмотрены следующие аспекты функционирования Hb: 1) каталитические функции, обусловленные гемовым (нитритредуктазная, NO-диоксигеназная, монооксигеназная, алкилгидропероксидазная) и белковым (эстеразная, липоксигеназная) компонентами молекулы; 2) участие в метаболизме оксида азота; 3) образование мембраносвязанной формы Hb и ее роль в регуляции метаболизма эритроцита; 4) физиологические функции продуктов катаболизма гемоглобина (железо, CO, билирубин, пептиды). Особое внимание уделено участию гемоглобина в трансдукции сигнала внутри эритроцита. С помощью Hb осуществляется связь между различными метаболическими параметрами эритроцита: кислородными условиями, образованием ATP, регуляцией рН, окислительно-восстановительным балансом и состоянием цитоскелета. Полифункциональность гемоглобина можно рассматривать как выражение принципа биохимической экономии.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Статья на английском языке опубликована в томе 83, вып. 12, 2018.

** Адресат для корреспонденции.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

1. Tejero, J., and Gladwin, M.T. (2014) The globin superfamily: functions in nitric oxide formation and decay, Biol. Chem., 395, 631–639.

2. Kosmachevskaya, O.V., and Topunov, A.F. (2009) Hemoglobins: diversity of structures and functions, Appl. Biochem. Microbiol., 45, 563–587.

3. Vinogradov, S.N., and Moens, L. (2008) Diversity of globin function: enzymatic, transport, storage and sensing, J. Biol. Chem., 283, 8773–8777.

4. Palmer, R.M., Ferrige, A.G., and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327, 524–526.

5. Hill, B.G., Dranka, B.P., Bailey, S.M., Lancaster, J.R. Jr., and Darley-Usmar, V.M. (2010) What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology, J. Biol. Chem., 285, 19699–19704.

6. Vinogradov, S.N., Fernandez, I., Hoogewijs, D., and Arredondo-Peter, R. (2011) Phylogenetic relationships of 3/3 and 2/2 hemoglobins in Archaeplastida genomes to bacterial and other eukaryote hemoglobins, Mol. Plant, 4, 42–58.

7. Gardner, P.R. (2005) Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases, J. Inorg. Biochem., 99, 247–266.

8. Perazzolli, M., Dominici, P., Romero-Puertas, M.C., Zago, E., Zeier, J., Sonoda, M., Lamb, C., and Delledonne, M. (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity, Plant Cell, 16, 2785–2794.

9. Gardner, A.M., Cook, M.R., and Gardner, P.R. (2010) Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes, J. Biol. Chem., 285, 23850–23857.

10. Jia, L., Bonaventura, C., Bonaventura, J., and Stamler, J.S. (1996) S-Nitrosohaemoglobin: a dynamic activity of blood involved in vascular control, Nature, 380, 221–226.

11. Doctor, A., Platt, R., Sheram, M.L., Eischeid, A., McMahon, T., Maxey, T., Doherty, J., Axelrod, M., Kline, J., Gurka, M., Gow, A., and Gaston, B. (2005) Hemoglobin conformation couples erythrocyte S-nitrosothiol content to O2 gradients, Proc. Natl. Acad. Sci. USA, 102, 5709–5714.

12. Timoshin, A.A., Vanin, A.F., Orlova, T.R., Sanina, N.A., Ruuge, E.K., Aldoshin, S.M., and Chazov, E.I. (2007) Protein-bound dinitrosyl-iron complexes appearing in blood of rabbit added with a low-molecular dinitrosyl-iron complexes: EPR studies, Nitric Oxide, 16, 286–293.

13. Shumaev, K.B., Gubkin, A.A., Serezhenkov, V.A., Lobysheva, I.I., Kosmachevskaya, O.V., Ruuge, E.K., Lankin, V.Z., Topunov, A.F., and Vanin, A.F. (2008) Interaction of reactive oxygen and nitrogen species with albumin- and hemoglobin bound dinitrosyl iron complexes, Nitric Oxide, 18, 37–46.

14. Shumaev, K.B., Kosmachevskaya, O.V., Timoshin, A.A., Vanin, A.F., and Topunov, A.F. (2008) Dinitrosyl iron complexes bound with haemoglobin as markers of oxidative stress, Methods Enzymol., 436, 445–461.

15. Gow, A.J., and Stamler, J.S. (1998) Reactions between nitric oxide and haemoglobin under physiological conditions, Nature, 391, 169–173.

16. Herold, S., Exner, M., and Nauser, T. (2001) Kinetic and mechanistic studies of the NO•-mediated oxidation of oxymyoglobin and oxyhemoglobin, Biochemistry, 40, 3385–3395.

17. Cortese-Krott, M.M., and Kelm, M. (2014) Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol., 2, 251–258.

18. Stamler, J.S. (2004) S-Nitrosothiols in the blood roles, amounts, and methods of analysis, Circ. Res., 94, 414–417.

19. Stamler, J.S., Singel, D.J., and Piantadosi, C.A. (2008) SNO-hemoglobin and hypoxic vasodilation, Nat. Med., 14, 1008–1009.

20. Benesch, R.E., and Benesch, R. (1962) The influence of oxygenation on the reactivity of the –SH groups of hemoglobin, Biochemistry, 1, 735–738.

21. Сандалова Т.П., Игнатенко Т.В. (1984) Окисление гемоглобина с модифицированными SH-группами, АН СССР, Сиб. отд., Ин-т физики им. Л.В. Киренского, Красноярск, Препринт № 308Ф.

22. Doyle, M.P., Pickering, R.A., DeWeert, T.M., Hoekstra, J.W., and Pater, D. (1981) Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites, J. Biol. Chem., 256, 12393–12398.

23. Huang, K.T., Keszler, A., Patel, N., Patel, R.P., Gladwin, M.T., Kim-Shapiro, D.B., and Hogg, N. (2005) The reaction between nitrite and deoxyhemoglobin. Reassessment of reaction kinetics and stoichiometry, J. Biol. Chem., 280, 31126–31131.

24. Helms C., and Kim-Shapiro, D.B. (2013) Hemoglobin-mediated nitric oxide signaling, Free Radic. Biol. Med., 61, 464–472.

25. Gladwin, M.T., Grubina, R., and Doyle, M.P. (2009) The new chemical biology of nitrite reactions with hemoglobin: R-state catalysis, oxidative denitrosylation, and nitrite reductase/angidrase, Acc. Chem. Res., 42, 157–167.

26. Cantu-Medellin, N., Vitturi, D.A., Rodriguez, C., Murphy, S., Dorman, S., Shiva, S., Zhou, Y., Jia, Y., Palmer, A.F., and Patel, R.P. (2011) Effects of T-state and R-state stabilization on deoxyhemoglobinnitrite reactions and stimulation of nitric oxide signaling, Nitric Oxide, 25, 59–69.

27. Keszler, A., Piknova, B., Schechter, A.N., and Hogg, N. (2008) The reaction between nitrite and oxyhemoglobin: a mechanistic study, J. Biol. Chem., 283, 9615–9622.

28. Zavodnik, I.B., Lapshina, E.A., Rekawiecka, K., Zavodnik, L.B., Bartosz, G., and Bryszewska, M. (1999) Membrane efects of nitrite-induced oxidation of human red blood cells, Biochim. Biophys. Acta, 1421, 306–316.

29. Nagababu, E., and Rifkind, J.M. (2007) Measurement of plasma nitrite by chemiluminescence without interference of S-, N-nitroso and nitrated species, Free Radic. Biol. Med., 42, 1146–1154.

30. Nagababu, E., Ramasamy, S., Abernethy, D.R., and Rifkind, J.M. (2003) Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction, J. Biol. Chem., 278, 46349–46356.

31. Gladwin, M.T., Raat, N.J., Shiva, S., Dezfulian, C., Hogg, N., Kim-Shapiro, D.B., and Patel, R.P. (2006) Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation, Am. J. Physiol. Heart Circ. Physiol., 291, 2026–2035.

32. Shiva, S. (2013) Nitrite: a physiological store of nitric oxide and modulator of mitochondrial function, Redox Biol., 1, 40–44.

33. Dalsgaard, T., Simonsen, U., and Fago, A. (2007) Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities, Am. J. Physiol. Heart Circ. Physiol., 292, 3072–3078.

34. Crawford, J.H., Isbell, T.S., Huang, Z., Shiva, S., Chacko, B.K., Schechter, A.N., Darley-Usmar, V.M., Kerby, J.D., Lang, J.D.Jr., Kraus, D., Ho, C., Gladwin, M.T., and Patel, R.P. (2006) Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation, Blood, 107, 566–574.

35. Cosby, K., Partovi, K.S., Crawford, J.H., Patel, R.P., Reiter, C.D., Martyr, S., Yang, B.K., Waclawiw, M.A., Zalos, G., Xu, X., Huang, K.T., Shields, H., Kim-Shapiro, D.B., Schechte, A.N., Cannon, R.O.3rd, and Gladwin, M.T. (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation, Nat. Med., 9, 1498–1505.

36. Rifkind, J.M., Nagababu, E., Barbiro-Michaely, E., Ramasamy, S., Pluta, R.M., and Mayevsky, A. (2007) Nitrite infusion increases cerebral blood flow and decreases mean arterial blood pressure in rats: a role for red cell NO, Nitric Oxide, 16, 448–456.

37. Richards, J.C., Racine, M.L., Hearon, C.M.Jr., Kunkel, M., Luckasen, G.J., Larson, D.G., Allen, J.D., and Dinenno, F.A. (2018) Acute ingestion of dietary nitrate increases muscle blood flow via local vasodilation during handgrip exercise in young adults, Physiol. Rep., 6, e13572.

38. Cao, Z., Bell, J.B., Mohanty, J.G., Nagababu, E., and Rifkind, J.M. (2009) Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation, Am. J. Physiol. Heart Circ. Physiol., 297, 1494–1503.

39. Иржак Л.И. (1975) Гемоглобины и их свойства, Наука, Москва, 240 с.

40. Tyuma, I. (1984) The Bohr effect and the Haldane effect in human hemoglobin, Jpn. J. Physiol., 34, 205–216.

41. Jensen, F.B. (2004) Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport, Acta Physiol. Scand., 182, 215–227.

42. Perutz, M.F. (1970) Stereochemistry of cooperative effects in haemoglobin: haem–haem interaction and the problem of allostery, Nature, 228, 726–734.

43. Камшилов И.М., Запруднова Р.А. (2013) Эффект Бора в характеристике буферных свойств гемоглобина рыб, Труды Карельского научного центра РАН, № 3, 190–193.

44. Sakai, Y., Miwa, M., Oe, K., Ueha, T., Koh, A., Niikura, T., Iwakura, T, Lee, S.Y., Tanaka, M., and Kurosaka, M. (2011) A novel system for transcutaneous application of carbon dioxide causing an «artificial Bohr effect» in the human body, PLoS One, 6, e24137.

45. Giardina, B., Messana, I., Scatena, R., and Castagnola, M. (1995) The multiple functions of haemoglobin, Crit. Rev. Biochem. Mol. Biol., 30, 165–196.

46. Anderson, H.M., and Turner, J.C. (1959) Preparation and the haemoglobin content of red cell «ghosts», Nature, 183, 112–113.

47. Anderson, H.M., and Turner, J.C. (1960) Relation of hemoglobin to the red cell membrane, J. Clin. Invest., 39, 1–7.

48. Gromov, P.S., Zakharov, S.F., Shishkin, S.S., and Ilinskii, R.V. (1988) Two-dimensional map of human-erythrocyte membrane-proteins, Biochemistry (Moscow), 53, 1146–1155.

49. Токтамысова З.С., Биржанова Н.Х. (1990) О мембраносвязанном гемоглобине, Биофизика, 35, 1019–1020.

50. Chu, H., and Low, P.S. (2006) Mapping of glycolytic enzyme-binding sites on human erythrocyte band 3, Biochem. J., 400, 143–151.

51. Пивоваров Ю.И., Кузнецова Э.Э., Горохова В.Г., Сергеева А.С., Бабушкина И.В., Корякина Л.Б., Андреева Е.О. (2016) Уровень мембраносвязанного гемоглобина и белки мембраны эритроцитов у больных гипертонической болезнью, осложненной и не осложненной метаболическим синдромом, Бюллетень ВСНЦ СО РАМН, 1, 61–67.

52. Чуйко Е.С., Орлова Г.М., Кузнецова Э.Э., Горохова В.Г. (2015) Мембраносвязанный гемоглобин и метгемоглобин эритроцитов у больных ишемической болезнью сердца, ЭНИ Забайкальский медицинский вестник, № 3, 9–12.

53. Созарукова М.М., Владимиров Г.К., Измайлов Д.Ю. (2015) Мембранно-связанный гемоглобин эритроцитов как возможный источник свободных радикалов, Материалы международной научной конференции «Science and practice: new discoveries» (Karlovy Vary–Moscow, 24–25 October 2015), Международный центр научно-исследовательских проектов, Киров, с. 771–780.

54. Насыбуллина Э.И., Космачевская О.В., Топунов А.Ф. (2018) Влияние метаболитов оксида азота на образование мембраносвязанного гемоглобина в условиях карбонильного стресса, Труды Карельского научного центра РАН, № 4, 93–104.

55. De Rosa, M.C., Alinovi, C.C., Galtieri, A., Scatena, R., and Giardina, B. (2007) The plasma membrane of erythrocytes plays a fundamental role in the transport of oxygen, carbon dioxide and nitric oxide and in the maintenance of the reduced state of the heme iron, Gene, 398, 162–171.

56. Shaklai, N., Yguerabide, J., and Ranney, H.M. (1977) Classification and localization of hemoglobin binding sites on the red blood cell membrane, Biochemistry, 16, 5593–5597.

57. Sega, M.F., Chu, H., Christian, J., and Low, P.S. (2012) Interaction of deoxyhemoglobin with the cytoplasmic domain of murine erythrocyte band 3, Biochemistry, 51, 3264–3272.

58. Walder, J.A., Chatterjee, R., Steck, T.L., Low, P.S., Musso, G.F., Kaiser, E.T., Rogers, P.H., and Arnone, A. (1984) The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane, J. Biol. Chem., 259, 10238–10246.

59. Shaklai, N., Sharma, V.S., and Ranney, H.M. (1981) Interaction of sickle cell hemoglobin with erythrocyte membranes, Proc. Natl. Acad. Sci. USA, 78, 65–68.

60. Demehin, A.A., Abugo, O.O., Jayakumar, J.R., and Rifkind, J.M. (2002) Binding of hemoglobin to red cell membranes with eosin-5-maleimide-labeled band 3: analysis of centrifugation and fluorescence data, Biochemistry, 41, 8630–8637.

61. Chan, E., and Desforges, J.F. (1976) The role of disulfide bonds in Heinz body attachment to membranes, Br. J. Haematol., 33, 371–378.

62. Sharma, R., and Premachandra, B.R. (1991) Membrane-bound hemoglobin as a marker of oxidative injury in adult and neonatal red blood cells, Biochem. Med. Metab. Biol., 46, 33–44.

63. Datta, P., Chakrabarty, S., Chakrabarty, A., and Chakrabarty, A. (2008) Membrane interactions of hemoglobin variants, HbA, HbE, HbF and globin subunits of HbA: effects of aminophospholipids and cholesterol, Biochim. Biophys. Acta, 1778, 1–9.

64. Giardina, B., Scatena, R., Clementi, M.E., Ramacci, M.T., Maccari, F., Cerroni, L., and Condo, S.G. (1991) Selective binding of met-hemoglobin to erythrocytic membrane: a possible involvement in red blood cell aging, Adv. Exp. Med. Biol., 307, 75–84.

65. Топунов А.Ф., Голубева Л.И. (1989) Редуктазы, восстанавливающие кислородпереносящие гемопротеиды: гемоглобин, миоглобин и легоглобин, Усп. биол. химии, 30, 239–252.

66. Shaklai, N., and Ranney, H.R. (1978) Interaction of hemoglobin with membrane lipids: a source of pathological phenomena, Isr. J. Med. Sci., 14, 1152–1156.

67. Kumar, S., and Bandyopadhyay, U. (2005) Free heme toxicity and its detoxification systems in human, Toxicol. Lett., 157, 175–188.

68. Kriebardis, A.G., Antonelou, M.H., Stamoulis, K.E., Economou-Petersen, E., Margaritis, L.H., and Papassideri, I.S. (2007) Progressive oxidation of cytoskeletal proteins and accumulation of denatured hemoglobin in stored red cells, J. Cell. Mol. Med., 11, 148–155.

69. Luckey, M. (2008) Membrane structural biology with biochemical and biophysical foundations, Cambridge Univ. Press, Cambridge, N.Y., USA.

70. Tsuneshige, A., Imai, K., and Tyuma, I. (1987) The binding of hemoglobin to red cell membrane lowers its oxygen affinity, J. Biochem., 101, 695–704.

71. Korobov, V.M. (1999) Effect of carnosine on the erythrocyte membrane in normal states and in diabetes, Ukr. Biokhim. Zh., 72, 94–96.

72. Salhany, J.M. (2008) Kinetics of reaction of nitrite with deoxy hemoglobin after rapid deoxygenation or predeoxygenation by dithionite measured in solution and bound to the cytoplasmic domain of band 3 (SLC4A1), Biochemistry, 47, 6059–6072.

73. Chu, H., Breite, A., Ciraolo, P., Franco, R.S., and Low, P.S. (2008) Characterization of the deoxyhemoglobin binding site on human erythrocyte band 3: implications for O2 regulation of erythrocyte properties, Blood, 111, 932–938.

74. Puchulu-Campanella, E., Chu, H., Anstee, D.J., Galan, J.A., Tao, W.A., and Low, P.S. (2013) Identification of the components of a glycolytic enzyme metabolon on the human red blood cell membrane, J. Biol. Chem., 288, 848–858.

75. Messana, I., Orlando, M., Cassiano, L., Pennacchietti, L., Zuppi, C., Castagnola, M., and Giardina, B. (1996) Human erythrocyte metabolism is modulated by the O2-linked transition of hemoglobin, FEBS Lett., 390, 25–28.

76. Weber, R.E., Voelter, W., Fago, A., Echner, H., Campanella, E., and Low, P.S. (2004) Modulation of red cell glycolysis: interactions between vertebrate hemoglobins and cytoplasmic domains of band 3 red cell membrane proteins, Am. J. Physiol. Regul. Integr. Comp. Physiol., 287, 454–464.

77. Sprague, R.S., Stephenson, A.H., and Ellsworth, M.L. (2007) Red not dead: signaling in and from erythrocytes, Trends Endocrin. Metab., 18, 350–355.

78. Ellsworth, M.L., Ellis, C.G., Goldman, D., Stephenson, A.H., Dietrich, H.H., and Sprague, R.S. (2009) Erythrocytes: oxygen sensors and modulators of vascular tone, Physiology (Bethesda), 24, 107–116.

79. Ramdani, G., and Langsley, G. (2014) ATP, an extracellular signaling molecule in red blood cells: a messenger for malaria? Biomed. J., 37, 284–292.

80. Thevenin, B.J.-M., Willardson, B.M., and Low, P.S. (1989) The redox state of cysteines 201 and 317 of the erythrocyte anion exchanger is critical for ankyrin binding, J. Biol. Chem., 264, 15886–15892.

81. Soszynski, M., and Bartosz, G. (1997) Penetration of erythrocyte membrane by peroxynitrite: participation of the anion exchange protein, Biochem. Mol. Biol. Int., 43, 319–325.

82. Shingles, R., Roh, M.H., and McCarty, R.E. (1997) Direct measurement of nitrite transport across erythrocyte membrane vesicles using the fluorescent probe, 6-methoxy-N-(3-sulfopropyl) quinolinium, J. Bioenerg. Biomembr., 29, 611–616.

83. Matsumoto, A., and Gow, A.J. (2011) Membrane transfer of S-nitrosothiols, Nitric Oxide, 25, 102–107.

84. Huang, Z., Louderback, J.G., Goyal, M., Azizi, F., King, S.B., and Kim-Shapiro, D.B. (2001) Nitric oxide binding to oxygenated hemoglobin under physiological conditions, Biochim. Biophys. Acta, 1568, 252–560.

85. Kuhn, V., Diederich, L., Keller, T.C.S.IV, Kramer, C.M., Luckstadt, W., Panknin, C., Suvorava, T., Isakson, B.E., Kelm, M., and Cortese-Krott, M.M. (2017) Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia, Antioxid. Redox Signal., 26, 718–742.

86. Vaughn, M.W., Huang, K.-T., Kuo, L., and Liao, J.C. (2000) Erythrocytes possess an intrinsic barrier to nitric oxide consumption, J. Biol. Chem., 275, 2342–234.

87. Han, T.H., Hyduke, D.R., Vaughn, M.W., Fukuto, J.M., and Liao, J.C. (2002) Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions, Proc. Natl. Acad. Sci. USA, 99, 7763–7768.

88. Gladwin, M.T., Crawford, J.H., and Patel, R.P. (2004) The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation, Free Radic. Biol. Med., 36, 707–717.

89. Bergfeld, G.R., and Forrester, T. (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia, Cardiovasc. Res., 26, 40–47.

90. Jagger, J.E., Bateman, R.M., Ellsworth, M.L., and Ellis, C.G. (2001) Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation, Am. J. Physiol. Heart Circ. Physiol., 280, 2833–2839.

91. Sprague, R.S., Ellsworth, M.L., Stephenson, A.H., and Lonigro, A.J. (2001) Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release, Am. J. Physiol. Cell Physiol., 281, 1158–1164.

92. Olearczyk, J.J., Stephenson, A.H., Lonigro, A.J., and Sprague, R.S. (2004) Heterotrimeric, G protein Gi is involved in a signal transduction pathway for ATP release from erythrocytes, Am. J. Physiol. Heart Circ. Physiol., 286, 940–945.

93. Лунева О.Г., Сидоренко С.В., Максимов Г.В., Григорчик Р., Орлов С.Н. (2015) Эритроциты как регуляторы сосудистого тонуса, Биол. мембраны, 32, 223–234.

94. Stefanovic, M., Puchulu-Campanella, E., Kodippili, G., and Low, P.S. (2013) Oxygen regulates the band 3-ankyrin bridge in the human erythrocyte membrane, Biochem. J., 449, 143–150.

95. Ito, H., Murakami, R., Sakuma, S., Tsai, C.D., Gutsmann, T., Brandenburg, K., Poschl, J.M., Arai, F., Kaneko, M., and Tanaka, M. (2017) Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling, Sci. Rep., 7, 43134.

96. Sikora, J., Orlov, S.N., Furuya, K., and Grygorczyk, R. (2014) Hemolysis is a primary ATP-release mechanism in human erythrocytes, Blood, 124, 2150–2157.

97. Luneva, O.G., Sidorenko, S.V., Ponomarchuk, O.O., Tverskoy, A.M., Cherkashin, A.A., Rodnenkov, O.V., Alekseeva, N.V., Deev, L.I., Maksimov, G.V., Grygorczyk, R., and Orlov, S.N. (2016) Deoxygenation affects composition of membrane-bound proteins in human erythrocytes, Cell Physiol. Biochem., 39, 81–88.

98. Grygorczyk, R., and Orlov, S.N. (2017) Effects of hypoxia on erythrocyte membrane properties-implications for intravascular hemolysis and purinergic control of blood flow, Front. Physiol., 8, 1110.

99. O’Neill, J.S., and Reddy, A.B. (2011) Circadian clocks in human red blood cells, Nature, 469, 498–503.

100. Cho, C.S., Yoon, H.J., Kim, J.Y., Woo, H.A., and Rhee, S.G. (2014) Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells, Proc. Natl. Acad. Sci. USA, 111, 12043–12048.

101. Латенков В.П. (1986) Суточные ритмы кислотно-щелочного баланса и газового состава крови, Бюлл. эксп. биол. мед., 101, 614–616.

102. Klei, T.R., Meinderts, S.M., van den Berg, T.K., and van Bruggen, R. (2017) From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis, Front. Immunol., 8, 73.

103. Badior, K.E., and Casey, J.R. (2018) Molecular mechanism for the red blood cell senescence clock, IUBMB Life, 70, 32–40.

104. Waugh, S.M., and Low, P.S. (1985) Hemichrome binding to band 3: nucleation of Heinz bodies on the erythrocyte membrane, Biochemistry, 24, 34–39.

105. McPherson, R.A., Sawyer, W.H., and Tilley, L. (1992) Rotational diffusion of the erythrocyte integral membrane protein band 3: effect of hemichrome binding, Biochemistry, 31, 512–518.

106. Bosman, G.J. (2016) The proteome of the red blood cell: an auspicious source of new insights into membrane-centered regulation of homeostasis, Proteomes, 4, E35.

107. Arashiki, N., Kimata, N., Manno, S., Mohandas, N., and Takakuwa, Y. (2013) Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence, Biochemistry, 52, 5760–5769.

108. Briglia, M., Rossi, M.A., and Faggio, C. (2017) Eryptosis: ally or enemy, Curr. Med. Chem., 24, 937–942.

109. Pantaleo, A., Ferru, E., Pau, M.C., Khadjavi, A., Mandili, G., Matte, A., Spano, A., De Franceschi, L., Pippia, P., and Turrini, F. (2016) Band 3 erythrocyte membrane protein acts as redox stress sensor leading to its phosphorylation by p72 Syk, Oxid. Med. Cell. Longev., 6051093.

110. Ferru, E., Pantaleo, A., Carta, F., Mannu, F., Khadjavi, A., Gallo, V., Ronzoni, L., Graziadei, G., Cappellini, M.D., and Turrini, F. (2014) Thalassemic erythrocytes release microparticles loaded with hemichromes by redox activation of p72Syk kinase, Haematologica, 99, 570–578.

111. Ferru, E., Giger, K., Pantaleo, A., Campanella, E., Grey, J., Ritchie, K., Vono, R., Turrini, F., and Low, P.S. (2011) Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3, Blood, 117, 5998–6006.

112. Голубчиков О.А., Березин Б.Д. (1986) Прикладные аспекты порфиринов, Усп. химии, 55, 1361–1389.

113. Maples, K.R., Eyer, P., and Mason, R.P. (1990) Aniline-, phenylhydroxylamine-, nitrosobenzene-, and nitrobenzene-induced hemoglobin thiyl free radical formation in vivo and in vitro, Mol. Pharmacol., 37, 311–318.

114. Jia, Y., Buehler, P.W., Boykins, R.A., Venable, R.M., and Alayash, A.I. (2007) Structural basis of peroxide-mediated changes in human hemoglobin: a novel oxidative pathway, J. Biol. Chem., 282, 4894–4907.

115. Vallelian, F., Pimenova, T., Pereira, C.P., Abraham, B., Mikolajczyk, M.G., Schoedon, G., Schoedon, G., Zenobi, R., Alayash, A.I., Buehler, P.W., and Schaer, D.J. (2008) The reaction of hydrogen peroxide with hemoglobin induces extensive alpha-globin crosslinking and impairs the interaction of hemoglobin with endogenous scavenger pathways, Free Radic. Biol. Med., 45, 1150–1158.

116. Umbreit, J. (2007) Methemoglobin – it’s not just blue: a concise review, Am. J. Hematol., 82, 134–144.

117. Silkstone, G.G., Silkstone, R.S., Wilson, M.T., Simons, M., Bulow, L., Kallberg, K., Ratanasopa, K., Ronda, L., Mozzarelli, A., Reeder, B.J., and Cooper, C.E. (2016) Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design, Biochem. J., 473, 3371–3383.

118. Widmer, C.C., Pereira, C.P., Gehrig, P., Vallelian, F., Schoedon, G., Buehler, P.W., and Schaer, D.J. (2010) Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase, Antioxid. Redox. Signal., 12, 185–198.

119. Grigorieva, D.V., Gorudko, I.V., Sokolov, A.V., Kosmachevskaya, O.V., Topunov, A.F., Buko, I.V., Konstantinova, E.E., Cherenkevich, S.N., and Panasenko, O.N. (2013) Measurement of plasma hemoglobin peroxidase activity, Bull. Exp. Biol. Med., 155, 118–121.

120. Huang, L., Wojciechowski, G., and Ortiz de Montellano, P.R. (2006) Role of heme-protein covalent bonds in mammalian peroxidases: protection of the heme by a single engineered hemeprotein link in horseradish peroxidase, J. Biol. Chem., 281, 18983–18938.

121. Grutzner, A., Garcia-Manyes, S., Kotter, S., Badilla, C.L., Fernandez, J.M., and Linke, W.A. (2009) Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence, Biophys. J., 97, 825–834.

122. Golly, I., and Hlavica, P. (1983) The role of hemoglobin in the N-oxidation of 4-chloroaniline, Biochim. Biophys. Acta, 760, 69–76.

123. Miyazaki, K., Arai, S., Iwamoto, T., Takasaki, M., and Tomoda, A. (2004) Metabolism of pyrogallol to purpurogallin by human erythrocytic hemoglobin, Tohoku J. Exp. Med., 203, 319–330.

124. George, P., and Irvine, D.H. (1951) Reaction of methmyoglobin with hydrogen peroxide, Nature, 168, 164–165.

125. Schaer, D.J., Buehler, P.W., Alayash, A.I., Belcher, J.D., and Vercellotti, G.M. (2013) Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins, Blood, 121, 1276–1284.

126. Nagakubo, T., Kumano, T., Hashimoto, Y., and Kobayashi, M. (2018) Hemoglobin catalyzes CoA degradation and thiol addition to flavonoids, Sci. Rep., 8, 1282.

127. Elbaum, D., and Nagel, R.L. (1981) Esterase activity of hemoglobin. Differences between HB A and HB S, J. Biol. Chem., 256, 2280–2283.

128. Kuhn, H., Gotze, R., Schewe, T., and Rapoport, S.M. (1981) Quasi-lipoxygenase activity of haemoglobin. A model for lipoxygenases, Eur. J. Biochem., 120, 161–168.

129. Rother, R.P., Bell, L., Hillmen, P., and Gladwin, M.T. (2005) The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease, J. Am. Med. Ass., 293, 1653–1662.

130. Schaer, C.A., Deuel, J.W., Bittermann, A.G., Rubio, I.G., Schoedon, G., Spahn, D.R., Wepf, R.A., Vallelian, F., and Schaer, D.J. (2013) Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage, Cell Death Differ., 20, 1569–1579.

131. Reiter, C.D., Wang, X., Tanus-Santos, J.E., Hogg, N., Cannon, R.O., Schechter, A.N., and Gladwin, M.T. (2002) Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease, Nat. Med., 8, 1383–1289.

132. Grinshtein, N., Bamm, V.V., Tsemakhovich, V.A., and Shaklai, N. (2003) Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron, Biochemistry, 42, 6977–6985.

133. Cooper, C.E., Schaer, D.J., Buehler, P.W., Wilson, M.T., Reeder, B.J., Silkstone, G., Svistunenko, D.A., Bulow, L., and Alayash, A.I. (2012) Haptoglobin binding stabilizes hemoglobin ferryl iron and the globin radical on tyrosine beta145, Antioxid. Redox Signal., 18, 2264–2273.

134. Kapralov, A., Vlasova, I.I., Feng, W., Maeda, A., Walson, K., Tyurin, V.A., Huang, Z., Aneja, R.K., Carcillo, J., Bayэr, H., and Kagan, V.E. (2009) Peroxidase activity of hemoglobin·haptoglobin complexes. Covalent aggregation and oxidative stress in plasma and macrophages, J. Biol. Chem., 284, 30395–30407.

135. Choi, A.M., and Alam, J. (1996) Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury, J. Respir. Cell Mol. Biol., 15, 9–19.

136. Bianchetti, C.M., Yi L., Ragsdale, S.W., and Philips, G.N.Jr. (2007) Comparison of apo- and heme-bound crystal structures of a truncated human heme oxygenase-2, J. Biol. Chem., 282, 37624–37631.

137. Ryter, S.W., and Tyrrell, R.M. (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity: heme oxygenase has both pro- and antioxidant properties, Free Radic. Biol. Med., 28, 289–309.

138. Wagener, F.A., Volk, H.D., Willis, D., Abraham, N.G., Soares, M.P., Adema, G.J., and Figdor, C.G. (2003) Different faces of the heme-heme oxygenase system in inflammation, Pharmacol. Rev., 55, 551–571.

139. Shimizu, T., Huang, D., Yan, F., Stranava, M., Bartosova, M., Fojtikova, V., and Martinkova, M. (2015) Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors, Chem. Rev., 115, 6491–6533.

140. Stec, D.E., Drummond, H.A., and Vera, T. (2008) Role of carbon monoxide in blood pressure regulation, Hypertension, 51, 597–604.

141. Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., and Ames, B.N. (1987) Bilirubin is an antioxidant of possible physiological importance, Science, 235, 1043–1046.

142. Baranano, D.E., Rao, M., Ferris, C.D., and Snyder, S.H. (2002) Biliverdin reductase: a major physiologic cytoprotectant, Proc. Natl. Acad. Sci. USA, 99, 16093–16098.

143. Fondevila, C., Shen, X.D., Tsuchiyashi, S., Yamashita, K., Csizmadia, E., Lassman, C., Busuttil, R.W., Kupiec-Weglinski, J.W., and Bach, F.H. (2004) Biliverdin therapy protects rat livers from ischemia and reperfusion injury, Hepatology, 40, 1333–1341.

144. Spetzler, V., Goldaracena, N., Kaths, J.M., Marquez, M., Selzner, M., and Selzner, N. (2017) Elevated preoperative serum bilirubin improves reperfusion injury and survival postliver transplantation, Transplant. Direct, 3, e187.

145. Li, J.J., Zou, Z.Y., Liu, J., Xiong, L.L., Jiang, H.Y., Wang, T.H., and Shao, J.L. (2017) Biliverdin administration ameliorates cerebral ischemia reperfusion injury in rats and is associated with proinflammatory factor downregulation, Exp. Ther. Med., 14, 671–679.

146. Potor, L., Nagy, P., Mehes, G., Hendrik, Z., Jeney, V., Petho, D., Vasas, A., Palinkas, Z., Balogh, E., Gyetvai, A., Whiteman, M., Torregrossa, R., Wood, M.E., Olvaszto, S., Nagy, P., Balla, G., and Balla, J. (2018) Hydrogen sulfide abrogates hemoglobin-lipid interaction in atherosclerotic lesion, Oxid. Med. Cell. Longev., 2018, 3812568.

147. Korovila, I., Hugo, M., Castro, J.P., Weber, D., Hohn, A., Grune, T., and Jung, T. (2017) Proteostasis, oxidative stress and aging, Redox Biol., 13, 550–567.

148. Otterbein, L.E., Soares, M.P., Yamashita, K., and Bach, F.H. (2003) Heme oxygenase-1: unleashing the protective properties of heme, Trends Immunol., 24, 449–455.

149. Konrad, F.M., Zwergel, C., Ngamsri, K.C., and Reutershan, J. (2017) Anti-inflammatory effects of heme oxygenase-1 depend on adenosine A2A- and A2B-receptor signaling in acute pulmonary inflammation, Front. Immunol., 8, 1874.

150. Guarda, C.C.D., Santiago, R.P., Fiuza, L.M., Aleluia, M.M., Ferreira, J.R.D., Figueiredo, C.V.B., Yahouedehou, S.C.M.A., Oliveira, R.M., Lyra, I.M., and Goncalves, M.S. (2017) Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia, Expert. Rev. Hematol., 10, 533–541.

151. Righy, C., Turon, R., Freitas, G., Japiassu, A.M., Faria Neto, H.C.C., Bozza, M., Oliveira, M.F., and Bozza, F.A. (2018) Hemoglobin metabolism by-products are associated with an inflammatory response in patients with hemorrhagic stroke, Rev. Bras. Ter. Intensiva, 30, 21–27.

152. Merle, N.S., Grunenwald, A., Figueres, M.L., Chauvet, S., Daugan, M., Knockaert, S., Robe-Rybkine, T., Noe, R., May, O., Frimat, M., Brinkman, N., Gentinetta, T., Miescher, S., Houillier, P., Legros, V., Gonnet, F., Blanc-Brude, O.P., Rabant, M., Daniel, R., Dimitrov, J.D., and Roumenina, L.T. (2018) Characterization of renal injury and inflammation in an experimental model of intravascular hemolysis, Front. Immunol., 9, 179.

153. Dutra, F.F., and Bozza, M.T. (2014) Heme on innate immunity and inflammation, Front. Pharmacol., 5, 115.

154. Shayeghi, M., Latunde-Dada, G.O., Oakhill, J.S., Laftah, A.H., Takeuchi, K., Halliday, N., Khan, Y., Warley, A., McCann, F.E., Hider, R.C., Frazer, D.M., Anderson, G.J., Vulpe, C.D., Simpson, R.J., and McKie, A.T. (2005) Identification of an intestinal heme transporter, Cell, 122, 789–801.

155. Figueiredo, R.T., Fernandez, P.L., Mourao-Sa, D.S., Porto, B.N., Dutra, F.F., Alves, L.S., Oliveira, M.F., Oliveira, P.L., Graca-Souza, A.V., and Bozza, M.T. (2007)Characterization of heme as activator of Toll-like receptor, J. Biol. Chem., 282, 20221–20229.

156. Lin, T., Kwak, Y.H., Sammy, F., He, P., Thundivalappil, S., Su, G., Chao, W., and Shaw, H. (2010) Warren synergistic inflammation is induced by blood degradation products with microbial Toll-like receptor agonists and is blocked by hemopexin, J. Infect. Dis., 202, 624–632.

157. Belcher, J.D., Chen, C., Nguyen, J., Milbauer, L., Abdulla, F., Alayash, A.I., Smith, A., Nath, K.A., Hebbel, R.P., and Vercellotti, G.M. (2014) Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease, Blood, 123, 377–390.

158. Horrigan, F.T., Heinemann, S.H., and Hoshi, T. (2005) Heme regulates allosteric activation of the Slo1 BK channel, J. Gen. Physiol., 126, 7–21.

159. Milto, I.V., Suhodolo, I.V., Klimenteva, T.K., and Prokopieva, V.D. (2016) Molecular and cellular bases of iron metabolism in humans, Biochemistry (Moscow), 81, 549–564.

160. Lang, E., Bissinger, R., Qadri, S.M., and Lang, F. (2017) Suicidal death of erythrocytes in cancer and its chemotherapy: a potential target in the treatment of tumor-associated anemia, Int. J. Cancer, 141, 1522–1528.

161. Кривенцев Ю.А., Никулина Д.М. (2018) Биохимия: строение и роль белков гемоглобинового профиля, Юрайт, Москва, 73 с.

162. Lane, N. (2002) Oxygen: the molecule that made the world, Oxford Univ. Press, Oxford, UK.

163. Brantl, V., Gramsch, C., Lottspeich, F., Mertz, R., Jaeger, K.H., and Herz, A. (1986) Novel opioid peptides derived from hemoglobin: hemorphins, Eur. J. Pharmacol., 125, 309–310.

164. Gomes, I., Dale, C.S., Casten, K., Geigner, M.A., Gozzo, F.C., Ferro, E.S., Heimann, A.S., and Devi, L.A. (2010) Hemoglobin-derived peptides as novel type of bioactive signaling molecules, AAPS J., 12, 658–669.

165. Heimann, A.S., Gomes, I., Dale, C.S., Pagano, R.L., Gupta, A., de Souza, L.L., Luchessi, A.D., Castro, L.M., Giorgi, R., Rioli, V., Ferro, E.S., and Devi, L.A. (2007) Hemopressin is an inverse agonist of CB1 cannabinoid receptors, Proc. Natl. Acad. Sci. USA, 104, 20588–20593.

166. Nyberg, F., Sanderson, K., and Glamsta, E.L. (1997) The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin, Biopolymers, 43, 147–516.

167. Moeller, I., Albiston, A.L., Lew, R.A., Mendelsohn, F.A., and Chai, S.Y. (1999) A globin fragment, LVV-hemorphin-7, induces [3H]thymidine incorporation in a neuronal cell line via the AT4 receptor, J. Neurochem., 73, 301–308.

168. Cejka, J., Zelezna, B., Velek, J., Zicha, J., and Kunes, J. (2004) LVV-hemorphin-7 lowers blood pressure in spontaneously hypertensive rats: radiotelemetry study, Physiol. Res., 53, 603–607.

169. Fruitier-Arnaudin, I., Cohen, M., Bordenave, S., Sannier, F., and Piot, J.M. (2002) Comparative effects of angiotensin IV and two hemorphins on angiotensin-converting enzyme activity, Peptides, 23, 1465–1470.

170. Collinder, E., Nyberg, F., Sanderson-Nydahl, K., Gottlieb-Vedi, M., and Lindholm, A. (2005) The opioid haemorphin-7 in horses during low-speed and high-speed treadmill exercise to fatigue, J. Vet. Med. A Physiol. Pathol. Clin. Med., 52, 162–165.

171. Lee, J., Albiston, A.L., Allen, A.M., Mendelsohn, F.A., Ping, S.E., Barrett, G.L., Murphy, M., Morris, M.J., McDowall, S.G., and Chai, S.Y. (2004) Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats, Neuroscience, 124, 341–349.

172. Шамова Е.В., Бичан О.Д., Дрозд Е.С., Горудко И.В., Чижик С.А., Шумаев К.Б., Черенкевич С.Н., Ванин А.Ф. (2011) Регуляция функциональных и механических свойств тромбоцитов и эритроцитов донорами монооксида азота, Биофизика, 56, 265–271.

173. Мартусевич А.К., Соловьева А.Г., Перетягин С.П., Давыдюк А.В. (2014) Влияние динитрозильных комплексов железа на метаболические параметры крови животных с экспериментальной термической травмой, Биофизика, 59, 1173–1179.

174. Bryszewska, M. (1988) Interaction of normal and glycated human haemoglobin with erythrocyte membranes from normal and diabetic individuals, J. Clin. Chem. Clin. Biochem., 26, 809–813.

175. Nasybullina, E.I., Nikitaev, V.G., Pronichev, A.N., Blindar, V.N., Kosmachevskaya, O.V., and Topunov, A.F. (2015) Expert diagnostic system for hemoglobinopathies using the data on blood, erythrocyte, and hemoglobin state, Bulletin of the Lebedev Physics Institute, 42, 206–208.

176. De Henau, S., and Braeckman, B.P. (2016) Globin-based redox signaling, Worm, 5, e1184390.

177. Burr, A.H., Hunt, P., Wagar, D.R., Dewilde, S., Blaxter, M.L., Vanfleteren, J.R., and Moens, L. (2000) A hemoglobin with an optical function, J. Biol. Chem., 275, 4810–4815.

178. Brooks, J. (1937) The action of nitrite on haemoglobin in the absence of oxygen, Proc. Royal Soc. Lond. Ser. B. Biol. Sci., 123, 368–382.

179. Gladwin, M.T. (2004) Haldane, hot dogs, halitosis, and hypoxic vasodilation: the emerging biology of the nitrite anion, J. Clin. Invest., 113, 19–21.