БИОХИМИЯ, 2023, том 88, вып. 10, с. 1775–1799
УДК 577.352.54
Ионные каналы в электрической сигнализации у высших растений
Обзор
1 Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского, Институт биологии и биомедицины, кафедра биофизики, 603022 Нижний Новгород, Россия
Поступила в редакцию 21.06.2023
После доработки 16.09.2023
Принята к публикации 18.09.2023
DOI: 10.31857/S0320972523100056
КЛЮЧЕВЫЕ СЛОВА: электрические сигналы у растений, дистанционные сигналы, ионные каналы, потенциал действия, вариабельный потенциал.
Аннотация
Электрические сигналы (ЭС) растений, возникающие при действии различных внешних факторов, играют важную роль в адаптации к изменяющимся условиям окружающей среды. Генерация ЭС в клетках высших растений связана с активацией потоков Ca2+, K+, анионов, а также изменением активности H+-ATPазы плазмалеммы. В настоящем обзоре на основе сопоставления данных молекулярно-генетических и электрофизиологических исследований выполнен анализ молекулярной природы ионных каналов, вносящих вклад в передачу ЭС у высших растений. На основе таких характеристик ионных каналов, как селективность, механизм активации, а также внутриклеточная и тканевая локализация, из широкого разнообразия ионных каналов высших растений выделены те, которые отвечают требованиям к потенциальным участникам генерации ЭС. Анализ данных экспериментальных исследований, выполненных на мутантах с подавленной или усиленной экспрессией гена определённого канала, выявил те каналы, активация которых вносит вклад в формирование ЭС. К числу каналов, ответственных за возникновение потока Ca2+ при генерации ЭС, относятся каналы семейства GLR, потока K+ – GORK, анионов – MSL. Рассмотрение перспектив дальнейших исследований говорит о необходимости объединения в рамках единого исследования электрофизиологических и генетических подходов наряду с анализом ионных концентраций в интактных растениях.
Текст статьи
Сноски
* Адресат для корреспонденции.
Финансирование
Работа выполнена за счёт гранта Российского научного фонда (проект № 22‑14‑00388).
Вклад авторов
В.А. Воденеев – концепция и руководство работой; М.А. Мудрилов, М.М. Ладейнова, Д.В. Кузнецова и В.А. Воденеев – поиск материала; М.А. Мудрилов и М.М. Ладейнова – написание текста; М.М. Ладейнова и Д.В. Кузнецова – оформление рисунков; М.А. Мудрилов, М.М. Ладейнова и В.А. Воденеев – редактирование текста.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Соблюдение этических норм
Настоящая статья не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.
Список литературы
1. Huber, A. E., and Bauerle, T. L. (2016) Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge, J. Exp. Bot., 67, 2063-2079, doi: 10.1093/jxb/erw099.
2. Johns, S., Hagihara, T., Toyota, M., and Gilroy, S. (2021) The fast and the furious: rapid long-range signaling in plants, Plant Physiol., 185, 694-706, doi: 10.1093/plphys/kiaa098.
3. Mudrilov, M., Ladeynova, M., Grinberg, M., Balalaeva, I., and Vodeneev, V. (2021) Electrical signaling of plants under abiotic stressors: transmission of stimulus-specific information, Int. J. Mol. Sci., 22, 10715, doi: 10.3390/ijms221910715.
4. Ladeynova, M., Kuznetsova, D., Mudrilov, M., and Vodeneev, V. (2023) Integration of electrical signals and phytohormones in the control of systemic response, Int. J. Mol. Sci., 24, 847, doi: 10.3390/ijms24010847.
5. Sukhov, V., Sukhova, E., and Vodeneev, V. (2019) Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants, Prog. Biophys. Mol. Biol., 146, 63-84, doi: 10.1016/j.pbiomolbio.2018.11.009.
6. Klejchova, M., Silva-Alvim, F. A. L., Blatt, M. R., and Alvim, J. C. (2021) Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation, Plant Physiol., 185, 1523-1541, doi: 10.1093/plphys/kiab032.
7. Farmer, E. E., Gao, Y., Lenzoni, G., Wolfender, J., and Wu, Q. (2020) Wound- and mechanostimulated electrical signals control hormone responses, New Phytol., 227, 1037-1050, doi: 10.1111/nph.16646.
8. Опритов В. А., Пятыгин С. С., Ретивин В. Г. (1991) Биоэлектрогенез у высших растений, Наука, Москва.
9. Bulychev, A. A., and Komarova, A. V. (2014) Long-distance signal transmission and regulation of photosynthesis in characean cells, Biochemistry (Moscow), 79, 273-281, doi: 10.1134/S0006297914030134.
10. Kisnieriene, V., Trębacz, K., Pupkis, V., Koselski, M., and Lapeikaite, I. (2022) Evolution of long-distance signalling upon plant terrestrialization: comparison of action potentials in Characean algae and liverworts, Ann. Bot., 130, 457-475, doi: 10.1093/aob/mcac098.
11. Lunevsky, V. Z., Zherelova, O. M., Vostrikov, I. Y., and Berestovsky, G. N. (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels, J. Membr. Biol., 72, 43-58, doi: 10.1007/BF01870313.
12. Воденеев В. А., Катичева Л. А., and Сухов В. С. (2016) Электpичеcкие cигналы у выcшиx pаcтений: меxанизмы генеpации и pаcпpоcтpанения, Биофизика, 61, 598-606.
13. Fromm, J., and Lautner, S. (2007) Electrical signals and their physiological significance in plants: electrical signals in plants, Plant Cell Environ., 30, 249-257, doi: 10.1111/j.1365-3040.2006.01614.x.
14. Hodick, D., and Sievers, A. (1988) The action potential of Dionaea muscipula Ellis, Planta, 174, 8-18, doi: 10.1007/BF00394867.
15. Krol, E., Dziubinska, H., Stolarz, M., and Trebacz, K. (2006) Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula, Biol. Plant., 50, 411-416, doi: 10.1007/s10535-006-0058-5.
16. Stahlberg, R., Cleland, R. E., and Van Volkenburgh, E. (2006) Slow wave potentials – a propagating electrical signal unique to higher plants, in Communication in Plants (Baluška, F., Mancuso, S., and Volkmann, D., eds), Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 291-308, doi: 10.1007/978-3-540-28516-8_20.
17. Li, Q., Wang, C., and Mou, Z. (2020) Perception of damaged self in plants, Plant Physiol., 182, 1545-1565, doi: 10.1104/pp.19.01242.
18. Vodeneev, V., Mudrilov, M., Akinchits, E., Balalaeva, I., and Sukhov, V. (2018) Parameters of electrical signals and photosynthetic responses induced by them in pea seedlings depend on the nature of stimulus, Funct. Plant Biol., 45, 160, doi: 10.1071/FP16342.
19. Mudrilov, M., Ladeynova, M., Berezina, E., Grinberg, M., Brilkina, A., Sukhov, V., and Vodeneev, V. (2021) Mechanisms of specific systemic response in wheat plants under different locally acting heat stimuli, J. Plant Physiol., 258-259, 153377, doi: 10.1016/j.jplph.2021.153377.
20. Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S., and Farmer, E. E. (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signalling, Nature, 500, 422-426, doi: 10.1038/nature12478.
21. Salvador-Recatalà, V., Tjallingii, W. F., and Farmer, E. E. (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes, New Phytol., 203, 674-684, doi: 10.1111/nph.12807.
22. Julien, J. L., Desbiez, M. O., De Jaegher, G., and Frachisse, J. M. (1991) Characteristics of the wave of depolarization induced by wounding in Bidens Pilosa L., J. Exp. Bot., 42, 131-137, doi: 10.1093/jxb/42.1.131.
23. Shao, Q., Gao, Q., Lhamo, D., Zhang, H., and Luan, S. (2020) Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis, Sci. Signal., 13, eaba1453, doi: 10.1126/scisignal.aba1453.
24. Zimmermann, M. R., and Felle, H. H. (2009) Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities, Planta, 229, 539-547, doi: 10.1007/s00425-008-0850-x.
25. Katicheva, L., Sukhov, V., Akinchits, E., and Vodeneev, V. (2014) Ionic nature of burn-induced variation potential in wheat leaves, Plant Cell Physiol., 55, 1511-1519, doi: 10.1093/pcp/pcu082.
26. Vodeneev, V., Akinchits, E., and Sukhov, V. (2015) Variation potential in higher plants: Mechanisms of generation and propagation, Plant Signal. Behav., 10, e1057365, doi: 10.1080/15592324.2015.1057365.
27. Stahlberg, R., and Cosgrove, D. J. (1997) The propagation of slow wave potentials in pea epicotyls, Plant Physiol., 113, 209-217, doi: 10.1104/pp.113.1.209.
28. Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev, V., Dangl, J. L., and Mittler, R. (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli, Sci. Signal., 2, ra45, doi: 10.1126/scisignal.2000448.
29. Devireddy, A. R., Zandalinas, S. I., Gómez-Cadenas, A., Blumwald, E., and Mittler, R. (2018) Coordinating the overall stomatal response of plants: rapid leaf-to-leaf communication during light stress, Sci. Signal., 11, eaam9514, doi: 10.1126/scisignal.aam9514.
30. Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., and Schöffl, F. (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis, Plant Mol. Biol., 61, 733-746, doi: 10.1007/s11103-006-0045-4.
31. Kawarazaki, T., Kimura, S., Iizuka, A., Hanamata, S., Nibori, H., Michikawa, M., Imai, A., Abe, M., Kaya, H., and Kuchitsu, K. (2013) A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF, Biochim. Biophys. Acta, 1833, 2775-2780, doi: 10.1016/j.bbamcr.2013.06.024.
32. Hedrich, R. (2012) Ion channels in plants, Physiol. Rev., 92, 1777-1811, doi: 10.1152/physrev.00038.2011.
33. Costa, A., Navazio, L., and Szabo, I. (2018) The contribution of organelles to plant intracellular calcium signalling, J. Exp. Bot., 69, 4175-4193, doi: 10.1093/jxb/ery185.
34. Kollist, H., Jossier, M., Laanemets, K., and Thomine, S. (2011) Anion channels in plant cells: plant anion channels, FEBS J., 278, 4277-4292, doi: 10.1111/j.1742-4658.2011.08370.x.
35. Véry, A.-A., and Sentenac, H. (2002) Cation channels in the Arabidopsis plasma membrane, Trends Plant Sci., 7, 168-175, doi: 10.1016/S1360-1385(02)02262-8.
36. Fromm, J., and Spanswick, R. (1993) Characteristics of action potentials in willow (Salix viminalis L.), J. Exp. Bot., 44, 1119-1125, doi: 10.1093/jxb/44.7.1119.
37. Iosip, A. L., Böhm, J., Scherzer, S., Al-Rasheid, K. A. S., Dreyer, I., Schultz, J., Becker, D., Kreuzer, I., and Hedrich, R. (2020) The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling, PLoS Biol., 18, e3000964, doi: 10.1371/journal.pbio.3000964.
38. Vodeneev, V. A., Akinchits, E. K., Orlova, L. A., and Sukhov, V. S. (2011) The role of Ca2+, H+, and Cl− ions in generation of variation potential in pumpkin plants, Russ. J. Plant Physiol., 58, 974-981, doi: 10.1134/S1021443711050256.
39. Shabala, S., Cuin, T. A., Shabala, L., and Newman, I. (2012) Quantifying kinetics of net ion fluxes from plant tissues by non-invasive microelectrode measuring MIFE technique, in Plant Salt Tolerance (Shabala, S., and Cuin, T. A., eds), Humana Press, Totowa, NJ, pp. 119-134, doi: 10.1007/978-1-61779-986-0_7.
40. Hilleary, R., Choi, W.-G., Kim, S.-H., Lim, S. D., and Gilroy, S. (2018) Sense and sensibility: the use of fluorescent protein-based genetically encoded biosensors in plants, Curr. Opin. Plant Biol., 46, 32-38, doi: 10.1016/j.pbi.2018.07.004.
41. Lewis, B. D., Karlin-Neumann, C., and Spalding, E. P. (1997) Ca2+-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings, Plant Physiol., 114, 1327-1334, doi: 10.1104/pp.114.4.1327.
42. Krol, E., Dziubinska, H., and Trebacz, K. (2004) Low-temperature-induced transmembrane potential changes in mesophyll cells of Arabidopsis thaliana, Helianthus annuus and Vicia faba, Physiol. Plant, 120, 265-270, doi: 10.1111/j.0031-9317.2004.0244.x.
43. Vodeneev, V. A., Opritov, V. A., and Pyatygin, S. S. (2006) Reversible changes of extracellular pH during action potential generation in a higher plant Cucurbita pepo, Russ. J. Plant Physiol., 53, 481-487, doi: 10.1134/S102144370604008X.
44. Dindas, J., Dreyer, I., Huang, S., Hedrich, R., and Roelfsema, M. R. G. (2021) A voltage-dependent Ca2+ homeostat operates in the plant vacuolar membrane, New Phytol., 230, 1449-1460, doi: 10.1111/nph.17272.
45. Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T. A., and Pottosin, I. (2018) Calcium transport across plant membranes: mechanisms and functions, New Phytol., 220, 49-69, doi: 10.1111/nph.15266.
46. Dreyer, I., and Uozumi, N. (2011) Potassium channels in plant cells: potassium channels in plants, FEBS J., 278, 4293-4303, doi: 10.1111/j.1742-4658.2011.08371.x.
47. Sharma, T., Dreyer, I., and Riedelsberger, J. (2013) The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana, Front. Plant Sci., 4, 224, doi: 10.3389/fpls.2013.00224.
48. Naz, R., Khan, A., Alghamdi, B. S., Ashraf, G. M., Alghanmi, M., Ahmad, A., Bashir, S. S., and Haq, Q. M. R. (2022) An insight into animal glutamate receptors homolog of Arabidopsis thaliana and their potential applications – a review, Plants, 11, 2580, doi: 10.3390/plants11192580.
49. Zheng, Y., Luo, L., Wei, J., Chen, Q., Yang, Y., Hu, X., and Kong, X. (2018) The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana, Biochem. Biophys. Res. Commun., 506, 895-900, doi: 10.1016/j.bbrc.2018.10.153.
50. Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E., Gilliham, M., Liu, L.-H., Obermeyer, G., and Feijó, J. A. (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine, Science, 332, 434-437, doi: 10.1126/science.1201101.
51. Yu, B., Liu, N., Tang, S., Qin, T., and Huang, J. (2022) Roles of glutamate receptor-like channels (GLRs) in plant growth and response to environmental stimuli, Plants, 11, 3450, doi: 10.3390/plants11243450.
52. Tapken, D., Anschütz, U., Liu, L.-H., Huelsken, T., Seebohm, G., Becker, D., and Hollmann, M. (2013) A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids, Sci. Signal., 6, ra47, doi: 10.1126/scisignal.2003762.
53. Nguyen, C. T., Kurenda, A., Stolz, S., Chételat, A., and Farmer, E. E. (2018) Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant, Proc. Natl. Acad. Sci. USA, 115, 10178-10183, doi: 10.1073/pnas.1807049115.
54. Meyerhoff, O., Müller, K., Roelfsema, M. R. G., Latz, A., Lacombe, B., Hedrich, R., Dietrich, P., and Becker, D. (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold, Planta, 222, 418-427, doi: 10.1007/s00425-005-1551-3.
55. Ghosh, S., Bheri, M., and Pandey, G. K. (2021) Delineating calcium signaling machinery in plants: tapping the potential through functional genomics, Curr. Genomics, 22, 404-439, doi: 10.2174/1389202922666211130143328.
56. Salvador-Recatalà, V. (2016) New roles for the GLUTAMATE RECEPTOR-LIKE 3.3, 3.5, and 3.6 genes as on/off switches of wound-induced systemic electrical signals, Plant Signal. Behav., 11, e1161879, doi: 10.1080/15592324.2016.1161879.
57. Toyota, M., Spencer, D., Sawai-Toyota, S., Jiaqi, W., Zhang, T., Koo, A. J., Howe, G. A., and Gilroy, S. (2018) Glutamate triggers long-distance, calcium-based plant defense signaling, Science, 361, 1112-1115, doi: 10.1126/science.aat7744.
58. Jha, S. K., Sharma, M., and K. Pandey, G. (2016) Role of cyclic nucleotide gated channels in stress management in plants, Curr. Genomics, 17, 315-329, doi: 10.2174/1389202917666160331202125.
59. Wang, L., Ning, Y., Sun, J., Wilkins, K. A., Matthus, E., McNelly, R. E., Dark, A., Rubio, L., Moeder, W., Yoshioka, K., Véry, A., Stacey, G., Leblanc-Fournier, N., Legué, V., Moulia, B., and Davies, J. M. (2022) Arabidopsis thaliana CYCLIC NUCLEOTIDE-GATED CHANNEL2 mediates extracellular ATP signal transduction in root epidermis, New Phytol., 234, 412-421, doi: 10.1111/nph.17987.
60. Gobert, A., Park, G., Amtmann, A., Sanders, D., and Maathuis, F. J. M. (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport, J. Exp. Bot., 57, 791-800, doi: 10.1093/jxb/erj064.
61. Wang, Y.-F., Munemasa, S., Nishimura, N., Ren, H.-M., Robert, N., Han, M., Puzõrjova, I., Kollist, H., Lee, S., Mori, I., and Schroeder, J. I. (2013) Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells, Plant Physiol., 163, 578-590, doi: 10.1104/pp.113.225045.
62. Gao, F., Han, X., Wu, J., Zheng, S., Shang, Z., Sun, D., Zhou, R., and Li, B. (2012) A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – is involved in heat shock responses: CNGC6 is a heat-activated calcium channel, Plant J., 70, 1056-1069, doi: 10.1111/j.1365-313X.2012.04969.x.
63. Tunc-Ozdemir, M., Rato, C., Brown, E., Rogers, S., Mooneyham, A., Frietsch, S., Myers, C. T., Poulsen, L. R., Malhó, R., and Harper, J. F. (2013) Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility, PLoS One, 8, e55277, doi: 10.1371/journal.pone.0055277.
64. Christopher, D. A., Borsics, T., Yuen, C. Y., Ullmer, W., Andème-Ondzighi, C., Andres, M. A., Kang, B.-H., and Staehelin, L. A. (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells, BMC Plant Biol., 7, 48, doi: 10.1186/1471-2229-7-48.
65. Yoshioka, K., Moeder, W., Kang, H.-G., Kachroo, P., Masmoudi, K., Berkowitz, G., and Klessig, D. F. (2006) The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses, Plant Cell, 18, 747-763, doi: 10.1105/tpc.105.038786.
66. Shih, H.-W., DePew, C. L., Miller, N. D., and Monshausen, G. B. (2015) The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana, Curr. Biol., 25, 3119-3125, doi: 10.1016/j.cub.2015.10.025.
67. DeFalco, T. A., Moeder, W., and Yoshioka, K. (2016) Opening the gates: insights into cyclic nucleotide-gated channel-mediated signaling, Trends Plant Sci., 21, 903-906, doi: 10.1016/j.tplants.2016.08.011.
68. Tipper, E., Leitão, N., Dangeville, P., Lawson, D. M., and Charpentier, M. (2023) A novel mutant allele of AtCNGC15 reveals a dual function of nuclear calcium release in the root meristem, J. Exp. Bot., 74, 2572-2584, doi: 10.1093/jxb/erad041.
69. Tunc-Ozdemir, M., Tang, C., Ishka, M. R., Brown, E., Groves, N. R., Myers, C. T., Rato, C., Poulsen, L. R., McDowell, S., Miller, G., Mittler, R., and Harper, J. F. (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development, Plant Physiol., 161, 1010-1020, doi: 10.1104/pp.112.206888.
70. Ladwig, F., Dahlke, R. I., Stührwohldt, N., Hartmann, J., Harter, K., and Sauter, M. (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1, Plant Cell, 27, 1718-1729, doi: 10.1105/tpc.15.00306.
71. Meena, M. K., Prajapati, R., Krishna, D., Divakaran, K., Pandey, Y., Reichelt, M., Mathew, M. K., Boland, W., Mithöfer, A., and Vadassery, J. (2019) The Ca2+ channel CNGC19 regulates Arabidopsis defense against spodoptera herbivory, Plant Cell, 31, 1539-1562, doi: 10.1105/tpc.19.00057.
72. Wang, X., Ma, X., Wang, H., Li, B., Clark, G., Guo, Y., Roux, S., Sun, D., and Tang, W. (2015) Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels, Mol. Cell. Proteomics, 14, 686-694, doi: 10.1074/mcp.M114.042697.
73. Liu, Q., Ding, Y., Shi, Y., Ma, L., Wang, Y., Song, C., Wilkins, K. A., Davies, J. M., Knight, H., Knight, M. R., Gong, Z., Guo, Y., and Yang, S. (2021) The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants, EMBO J., 40, e104559, doi: 10.15252/embj.2020104559.
74. Liu, T., Du, L., Li, Q., Kang, J., Guo, Q., and Wang, S. (2021) AtCRY2 negatively regulates the functions of AtANN2 and AtANN3 in drought tolerance by affecting their subcellular localization and transmembrane Ca2+ flow, Front. Plant Sci., 12, 754567, doi: 10.3389/fpls.2021.754567.
75. Davies, J. (2014) Annexin-mediated calcium signalling in plants, Plants, 3, 128-140, doi: 10.3390/plants3010128.
76. Huh, S. M., Noh, E. K., Kim, H. G., Jeon, B. W., Bae, K., Hu, H.-C., Kwak, J. M., and Park, O. K. (2010) Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses, Plant Cell Physiol., 51, 1499-1514, doi: 10.1093/pcp/pcq111.
77. Laohavisit, A., Shang, Z., Rubio, L., Cuin, T. A., Véry, A.-A., Wang, A., Mortimer, J. C., Macpherson, N., Coxon, K. M., Battey, N. H., Brownlee, C., Park, O. K., Sentenac, H., Shabala, S., Webb, A. A. R., and Davies, J. M. (2012) Arabidopsis Annexin1 mediates the radical-activated plasma membrane Ca2+– and K+-permeable conductance in root cells, Plant Cell, 24, 1522-1533, doi: 10.1105/tpc.112.097881.
78. Lichocka, M., Rymaszewski, W., Morgiewicz, K., Barymow-Filoniuk, I., Chlebowski, A., Sobczak, M., Samuel, M. A., Schmelzer, E., Krzymowska, M., and Hennig, J. (2018) Nucleus- and plastid-targeted annexin 5 promotes reproductive development in Arabidopsis and is essential for pollen and embryo formation, BMC Plant Biol., 18, 183, doi: 10.1186/s12870-018-1405-3.
79. Zhu, J., Wu, X., Yuan, S., Qian, D., Nan, Q., An, L., and Xiang, Y. (2014) Annexin5 plays a vital role in Arabidopsis pollen development via Ca2+-dependent membrane trafficking, PLoS One, 9, e102407, doi: 10.1371/journal.pone.0102407.
80. Yadav, D., Ahmed, I., Shukla, P., Boyidi, P., and Kirti, P. (2016) Overexpression of Arabidopsis AnnAt8 alleviates abiotic stress in transgenic Arabidopsis and tobacco, Plants, 5, 18, doi: 10.3390/plants5020018.
81. Evans, M. J., Choi, W.-G., Gilroy, S., and Morris, R. J. (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress, Plant Physiol., 171, 1771-1784, doi: 10.1104/pp.16.00215.
82. Yamanaka, T., Nakagawa, Y., Mori, K., Nakano, M., Imamura, T., Kataoka, H., Terashima, A., Iida, K., Kojima, I., Katagiri, T., Shinozaki, K., and Iida, H. (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis, Plant Physiol., 152, 1284-1296, doi: 10.1104/pp.109.147371.
83. Hattori, T., Otomi, Y., Nakajima, Y., Soga, K., Wakabayashi, K., Iida, H., and Hoson, T. (2020) MCA1 and MCA2 are involved in the response to hypergravity in Arabidopsis hypocotyls, Plants, 9, 590, doi: 10.3390/plants9050590.
84. Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., Johnson, D. M., Swift, G. B., He, Y., Siedow, J. N., and Pei, Z.-M. (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis, Nature, 514, 367-371, doi: 10.1038/nature13593.
85. Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., Leitão, N., DeFalco, T. A., Köster, P., Hunter, K., Kimura, S., Gronnier, J., Stransfeld, L., Kadota, Y., Bücherl, C. A., Charpentier, M., Wrzaczek, M., MacLean, D., Oldroyd, G. E. D., Menke, F. L. H., Roelfsema, M. R. G., Hedrich, R., Feijó, J., and Zipfel, C. (2020) The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity, Nature, 585, 569-573, doi: 10.1038/s41586-020-2702-1.
86. Fang, X., Liu, B., Shao, Q., Huang, X., Li, J., Luan, S., and He, K. (2021) AtPiezo plays an important role in root cap mechanotransduction, Int. J. Mol. Sci., 22, 467, doi: 10.3390/ijms22010467.
87. Radin, I., Richardson, R. A., Coomey, J. H., Weiner, E. R., Bascom, C. S., Li, T., Bezanilla, M., and Haswell, E. S. (2021) Plant PIEZO homologs modulate vacuole morphology during tip growth, Science, 373, 586-590, doi: 10.1126/science.abe6310.
88. Tran, D., Galletti, R., Neumann, E. D., Dubois, A., Sharif-Naeini, R., Geitmann, A., Frachisse, J.-M., Hamant, O., and Ingram, G. C. (2017) A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1, Nat. Commun., 8, 1009, doi: 10.1038/s41467-017-00878-w.
89. Lee, C. P., Maksaev, G., Jensen, G. S., Murcha, M. W., Wilson, M. E., Fricker, M., Hell, R., Haswell, E. S., Millar, A. H., and Sweetlove, L. J. (2016) MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress, Plant J., 88, 809-825, doi: 10.1111/tpj.13301.
90. Hamilton, E. S., Schlegel, A. M., and Haswell, E. S. (2015) United in diversity: mechanosensitive ion channels in plants, Annu. Rev. Plant Biol., 66, 113-137, doi: 10.1146/annurev-arplant-043014-114700.
91. Hamilton, E. S., Jensen, G. S., Maksaev, G., Katims, A., Sherp, A. M., and Haswell, E. S. (2015) Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination, Science, 350, 438-441, doi: 10.1126/science.aac6014.
92. Haswell, E. S., Peyronnet, R., Barbier-Brygoo, H., Meyerowitz, E. M., and Frachisse, J.-M. (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root, Curr. Biol., 18, 730-734, doi: 10.1016/j.cub.2008.04.039.
93. Moe-Lange, J., Gappel, N. M., Machado, M., Wudick, M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus, M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D., Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E. S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., and Kleist, T. J. (2021) Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling, Sci. Adv., 7, eabg4298, doi: 10.1126/sciadv.abg4298.
94. Tran, D., Girault, T., Guichard, M., Thomine, S., Leblanc-Fournier, N., Moulia, B., De Langre, E., Allain, J.-M., and Frachisse, J.-M. (2021) Cellular transduction of mechanical oscillations in plants by the plasma-membrane mechanosensitive channel MSL10, Proc. Natl. Acad. Sci. USA, 118, e1919402118, doi: 10.1073/pnas.1919402118.
95. Guerringue, Y., Thomine, S., and Frachisse, J.-M. (2018) Sensing and transducing forces in plants with MSL10 and DEK1 mechanosensors, FEBS Lett., 592, 1968-1979, doi: 10.1002/1873-3468.13102.
96. Basu, D., and Haswell, E. S. (2020) The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings, Curr. Biol., 30, 2716-2728.e6, doi: 10.1016/j.cub.2020.05.015.
97. Hedrich, R., and Geiger, D. (2017) Biology of SLAC1-type anion channels – from nutrient uptake to stomatal closure, New Phytol., 216, 46-61, doi: 10.1111/nph.14685.
98. Barbier-Brygoo, H., De Angeli, A., Filleur, S., Frachisse, J.-M., Gambale, F., Thomine, S., and Wege, S. (2011) Anion channels/transporters in plants: from molecular bases to regulatory networks, Annu. Rev. Plant Biol., 62, 25-51, doi: 10.1146/annurev-arplant-042110-103741.
99. Lehmann, J., Jørgensen, M. E., Fratz, S., Müller, H. M., Kusch, J., Scherzer, S., Navarro-Retamal, C., Mayer, D., Böhm, J., Konrad, K. R., Terpitz, U., Dreyer, I., Mueller, T. D., Sauer, M., Hedrich, R., Geiger, D., and Maierhofer, T. (2021) Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis, Curr. Biol., 31, 3575-3585.e9, doi: 10.1016/j.cub.2021.06.018.
100. Ye, W., Koya, S., Hayashi, Y., Jiang, H., Oishi, T., Kato, K., Fukatsu, K., and Kinoshita, T. (2021) Identification of genes preferentially expressed in stomatal guard cells of Arabidopsis thaliana and involvement of the aluminum-activated malate transporter 6 vacuolar malate channel in stomatal opening, Front. Plant Sci., 12, 744991, doi: 10.3389/fpls.2021.744991.
101. Meyer, S., Scholz-Starke, J., De Angeli, A., Kovermann, P., Burla, B., Gambale, F., and Martinoia, E. (2011) Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation: AtALMT6 mediates malate transport in guard cells, Plant J., 67, 247-257, doi: 10.1111/j.1365-313X.2011.04587.x.
102. Boccaccio, A., Picco, C., Di Zanni, E., and Scholz-Starke, J. (2022) Phospholipid scrambling by a TMEM16 homolog of Arabidopsis thaliana, FEBS J., 289, 2578-2592, doi: 10.1111/febs.16279.
103. Zhang, H., Zhao, F.-G., Tang, R.-J., Yu, Y., Song, J., Wang, Y., Li, L., and Luan, S. (2017) Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis, Proc. Natl. Acad. Sci. USA, 114, E2036-E2045, doi: 10.1073/pnas.1616203114.
104. Herdean, A., Teardo, E., Nilsson, A. K., Pfeil, B. E., Johansson, O. N., Ünnep, R., Nagy, G., Zsiros, O., Dana, S., Solymosi, K., Garab, G., Szabó, I., Spetea, C., and Lundin, B. (2016) A voltage-dependent chloride channel fine-tunes photosynthesis in plants, Nat. Commun., 7, 11654, doi: 10.1038/ncomms11654.
105. Cuin, T., Dreyer, I., and Michard, E. (2018) The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials, Int. J. Mol. Sci., 19, 926, doi: 10.3390/ijms19040926.
106. Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S. J., Miller, A. J., Shabala, S., Sokolik, A., and Yurin, V. (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death, J. Cell Sci., 123, 1468-1479, doi: 10.1242/jcs.064352.
107. Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferrière, N., Thibaud, J.-B., and Sentenac, H. (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap, Cell, 94, 647-655, doi: 10.1016/S0092-8674(00)81606-2.
108. Lebaudy, A., Pascaud, F., Véry, A.-A., Alcon, C., Dreyer, I., Thibaud, J.-B., and Lacombe, B. (2010) Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells, J. Biol. Chem., 285, 6265-6274, doi: 10.1074/jbc.M109.068445.
109. Jeanguenin, L., Alcon, C., Duby, G., Boeglin, M., Chérel, I., Gaillard, I., Zimmermann, S., Sentenac, H., and Véry, A.-A. (2011) AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity: Modulatory subunit of inward K+ channel activity, Plant J., 67, 570-582, doi: 10.1111/j.1365-313X.2011.04617.x.
110. Kwak, J. M., Murata, Y., Baizabal-Aguirre, V. M., Merrill, J., Wang, M., Kemper, A., Hawke, S. D., Tallman, G., and Schroeder, J. I. (2001) Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis, Plant Physiol., 127, 473-485, doi: 10.1104/pp.010428.
111. Michard, E., Dreyer, I., Lacombe, B., Sentenac, H., and Thibaud, J.-B. (2005) Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation: regulation of AKT2 by phosphorylation, Plant J., 44, 783-797, doi: 10.1111/j.1365-313X.2005.02566.x.
112. Gobert, A., Isayenkov, S., Voelker, C., Czempinski, K., and Maathuis, F. J. M. (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis, Proc. Natl. Acad. Sci. USA, 104, 10726-10731, doi: 10.1073/pnas.0702595104.
113. Becker, D., Geiger, D., Dunkel, M., Roller, A., Bertl, A., Latz, A., Carpaneto, A., Dietrich, P., Roelfsema, M. R. G., Voelker, C., Schmidt, D., Mueller-Roeber, B., Czempinski, K., and Hedrich, R. (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner, Proc. Natl. Acad. Sci. USA, 101, 15621-15626, doi: 10.1073/pnas.0401502101.
114. Rocchetti, A., Sharma, T., Wulfetange, C., Scholz-Starke, J., Grippa, A., Carpaneto, A., Dreyer, I., Vitale, A., Czempinski, K., and Pedrazzini, E. (2012) The putative K+ channel subunit AtKCO3 forms stable dimers in Arabidopsis, Front. Plant Sci., 3, 251, doi: 10.3389/fpls.2012.00251.
115. Li, D.-D., Guan, H., Li, F., Liu, C.-Z., Dong, Y.-X., Zhang, X.-S., and Gao, X.-Q. (2017) Arabidopsis shaker pollen inward K+ channel SPIK functions in SnRK1 complex-regulated pollen hydration on the stigma: SPIK functions in pollen hydration on stigma, J. Integr. Plant Biol., 59, 604-611, doi: 10.1111/jipb.12563.
116. Jammes, F., Hu, H.-C., Villiers, F., Bouten, R., and Kwak, J. M. (2011) Calcium-permeable channels in plant cells: plant calcium channels, FEBS J., 278, 4262-4276, doi: 10.1111/j.1742-4658.2011.08369.x.
117. Basu, D., and Haswell, E. S. (2017) Plant mechanosensitive ion channels: an ocean of possibilities, Curr. Opin. Plant Biol., 40, 43-48, doi: 10.1016/j.pbi.2017.07.002.
118. Mori, K., Renhu, N., Naito, M., Nakamura, A., Shiba, H., Yamamoto, T., Suzaki, T., Iida, H., and Miura, K. (2018) Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis, Sci. Rep., 8, 550, doi: 10.1038/s41598-017-17483-y.
119. Zhang, Z., Tong, X., Liu, S.-Y., Chai, L.-X., Zhu, F.-F., Zhang, X.-P., Zou, J.-Z., and Wang, X.-B. (2019) Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana, Sci. Rep., 9, 3187, doi: 10.1038/s41598-019-39436-3.
120. Véry, A.-A., and Sentenac, H. (2003) Molecular mechanisms and regulation of K+ transport in higher plants, Annu. Rev. Plant Biol., 54, 575-603, doi: 10.1146/annurev.arplant.54.031902.134831.
121. Vincent, T. R., Avramova, M., Canham, J., Higgins, P., Bilkey, N., Mugford, S. T., Pitino, M., Toyota, M., Gilroy, S., Miller, A. J., Hogenhout, S. A., and Sanders, D. (2017) Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding, Plant Cell, 29, 1460-1479, doi: 10.1105/tpc.17.00136.
122. Fichman, Y., and Mittler, R. (2021) Integration of electric, calcium, reactive oxygen species and hydraulic signals during rapid systemic signaling in plants, Plant J., 107, 7-20, doi: 10.1111/tpj.15360.
123. Yu, B., Wu, Q., Li, X., Zeng, R., Min, Q., and Huang, J. (2022) Glutamate receptor-like gene OsGLR3.4 is required for plant growth and systemic wound signaling in rice (Oryza sativa), New Phytol., 233, 1238-1256, doi: 10.1111/nph.17859.
124. Kong, D., Hu, H.-C., Okuma, E., Lee, Y., Lee, H. S., Munemasa, S., Cho, D., Ju, C., Pedoeim, L., Rodriguez, B., Wang, J., Im, W., Murata, Y., Pei, Z.-M., and Kwak, J. M. (2016) L-Met activates Arabidopsis GLR Ca2+ channels upstream of ROS production and regulates stomatal movement, Cell Rep., 17, 2553-2561, doi: 10.1016/j.celrep.2016.11.015.
125. Veley, K. M., Maksaev, G., Frick, E. M., January, E., Kloepper, S. C., and Haswell, E. S. (2014) Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity, Plant Cell, 26, 3115-3131, doi: 10.1105/tpc.114.128082.
126. Xue, N., Zhan, C., Song, J., Li, Y., Zhang, J., Qi, J., and Wu, J. (2022) The glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect herbivores in Arabidopsis, J. Exp. Bot., 73, 7611-7627, doi: 10.1093/jxb/erac399.
127. Bellandi, A., Papp, D., Breakspear, A., Joyce, J., Johnston, M. G., de Keijzer, J., Raven, E. C., Ohtsu, M., Vincent, T. R., Miller, A. J., Sanders, D., Hogenhout, S. A., Morris, R. J., and Faulkner, C. (2022) Diffusion and bulk flow of amino acids mediate calcium waves in plants, Sci. Adv., 8, eabo6693, doi: 10.1126/sciadv.abo6693.
128. Hu, C., Duan, S., Zhou, J., and Yu, J. (2021) Characteristics of herbivory/wound-elicited electrical signal transduction in tomato, Front. Agr. Sci. Eng., 8, 292-301, doi: 10.15302/J-FASE-2021395.
129. Scherzer, S., Böhm, J., Huang, S., Iosip, A. L., Kreuzer, I., Becker, D., Heckmann, M., Al-Rasheid, K. A. S., Dreyer, I., and Hedrich, R. (2022) A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves, Curr. Biol., 32, 4255-4263.e5, doi: 10.1016/j.cub.2022.08.051.
130. Hedrich, R., and Kreuzer, I. (2023) Demystifying the Venus flytrap action potential, New Phytol., 239, 2108-2112, doi: 10.1111/nph.19113.
131. Zeng, H., Zhao, B., Wu, H., Zhu, Y., and Chen, H. (2020) Comprehensive in silico characterization and expression profiling of nine gene families associated with calcium transport in soybean, Agronomy, 10, 1539, doi: 10.3390/agronomy10101539.
132. Maksaev, G., and Haswell, E. S. (2012) MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions, Proc. Natl. Acad. Sci. USA, 109, 19015-19020, doi: 10.1073/pnas.1213931109.
133. Choi, W.-G., Toyota, M., Kim, S.-H., Hilleary, R., and Gilroy, S. (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants, Proc. Natl. Acad. Sci. USA, 111, 6497-6502, doi: 10.1073/pnas.1319955111.
134. Kiep, V., Vadassery, J., Lattke, J., Maaß, J., Boland, W., Peiter, E., and Mithöfer, A. (2015) Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis, New Phytol., 207, 996-1004, doi: 10.1111/nph.13493.
135. Cui, Y., Lu, S., Li, Z., Cheng, J., Hu, P., Zhu, T., Wang, X., Jin, M., Wang, X., Li, L., Huang, S., Zou, B., and Hua, J. (2020) CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice, Plant Physiol., 183, 1794-1808, doi: 10.1104/pp.20.00591.
136. Finka, A., Cuendet, A. F. H., Maathuis, F. J. M., Saidi, Y., and Goloubinoff, P. (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance, Plant Cell, 24, 3333-3348, doi: 10.1105/tpc.112.095844.