БИОХИМИЯ, 2022, том 87, вып. 12, с. 1916–1927

УДК 577.24

SkQ1 как инструмент воздействия на программу преждевременного старения: опыт исследований на крысах OXYS

Обзор

© 2022 Н.Г. Колосова 1*kolosova@bionet.nsc.ru, О.С. Кожевникова 1, Н.А. Муралёва 1, Е.А. Рудницкая 1, Ю.В. Румянцева 1, Н.А. Стефанова 1, Д.В. Телегина 1, М.А. Тюменцев 1, А.Ж. Фурсова 1,2

Федеральный исследовательский центр Институт цитологии и генетики СО РАН, 630090 Новосибирск, Россия

Новосибирский государственный медицинский университет Минздрава России, 630091 Новосибирск, Россия

Поступила в редакцию 28.09.2022
После доработки 06.10.2022
Принята к публикации 06.10.2022

DOI: 10.31857/S0320972522120119

КЛЮЧЕВЫЕ СЛОВА: феноптоз, старение, митохондриальный антиоксидант SkQ1, преждевременно стареющие крысы OXYS.

Аннотация

Согласно концепции В.П. Скулачева и соавторов, старение живых организмов может рассматриваться как частный случай запрограммированной смерти организма – феноптоза, а тормозить как острый феноптоз, так и хронический – старение – способен митохондриальный антиоксидант SkQ1. Авторы концепции связывают эффекты SkQ1 с подавлением усиленной генерации активных форм кислорода, вырабатываемых митохондриями. Многочисленные исследования подтвердили способность SkQ1 тормозить проявления «здорового», или физиологического, старения. Согласно результатам наших исследований, особенно эффективно он подавляет программу генетически детерминированного преждевременного старения крыс OXYS – раннее развитие комплекса возраст-зависимых заболеваний: катаракты, ретинопатии, аналогичной возрастной макулярной дегенерации у людей, остеопороза и признаков болезни Альцгеймера. Преждевременное старение крыс OXYS связано с дисфункцией митохондрий, но при этом прямых ассоциаций с окислительным стрессом выявлено не было. Тем не менее SkQ1 способен предупреждать и/или подавлять развитие всех проявлений преждевременного старения крыс OXYS. Его эффекты обусловлены воздействием на активность многих сигнальных путей и процессов, но прежде всего – восстановлением структурно-функциональных параметров митохондрий. Можно полагать, что использование SkQ1 станет перспективной стратегией в профилактике ускоренного феноптоза – раннего развития комплекса возраст-зависимых заболеваний (мультиморбидности) у предрасположенных к нему людей.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Бюджетного проекта № FWNR-2022-0016.

Вклад авторов

Н.Г. Колосова – концепция и руководство работой, подготовка обзора; все остальные авторы – равный вклад в исследования процессов преждевременного старения крыс OXYS и влияния на них SkQ1.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

Список литературы

1. Skulachev, V. P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689-706, doi: 10.1134/S0006297912070012.

2. Skulachev, M. V., and Skulachev, V. P. (2017) Programmed aging of mammals: proof of concept and prospects of biochemical approaches for anti-aging therapy, Biochemistry (Moscow), 82, 1403-1422, doi: 10.1134/S000629791712001X.

3. Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., et al. (2017) Neoteny, prolongation of youth: from naked mole rats to “Naked Apes” (Humans), Physiol. Rev., 97, 699-720, doi: 10.1152/physrev.00040.2015.

4. Figueira, I., Fernandes, A., Mladenovic Djordjevic, A., Lopez-Contreras, A., Henriques, C. M., et al. (2016) Interventions for age-related diseases: shifting the paradigm, Mech. Ageing Dev., 160, 69-92, doi: 10.1016/j.mad.2016.09.009.

5. Kolosova, N. G., Stefanova, N. A., Korbolina, E. E., Fursova, A. Zh., and Kozhevnikova, O. S. (2014) Senescence-accelerated OXYS rats: A genetic model of premature aging and age-related diseases, Adv. Gerontol., 4, 294-298, doi: 10.1134/S2079057014040146.

6. Stefanova, N. A., Kozhevnikova, O. S., Vitovtov, A. O., Maksimova, K. Y., Logvinov, S. V., et al. (2014) Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer’s disease, Cell Cycle, 13, 898-909, doi: 10.4161/cc.28255.

7. Stefanova, N. A., Muraleva, N. A., Korbolina, E. E., Kiseleva, E., Maksimova, K. Y., et al. (2015) Amyloid accumulation is a late event in sporadic Alzheimer’s disease-like pathology in nontransgenic rats, Oncotarget, 6, 1396-1413, doi: 10.18632/oncotarget.2751.

8. Muraleva, N. A., Devyatkin, V. A., and Kolosova, N. G. (2017) Phosphorylation of αB-crystallin in the myocardium: analysis of relations with aging and cardiomyopathy, Exp. Gerontol., 95, 26-33, doi: 10.1016/j.exger.2017.05.009.

9. Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009) Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats, Aging, 1, 389-401, doi: 10.18632/aging.100043.

10. Zhdankina, A. A., Fursova, A., Logvinov, S. V., and Kolosova, N. G. (2008) Clinical and morphological characteristics of chorioretinal degeneration in early aging OXYS rats, Bull. Exp. Biol. Med., 146, 455-458, doi: 10.1007/s10517-009-0298-4.

11. Kozhevnikova, O. S., Korbolina, E. E., Ershov, N. I., and Kolosova, N. G. (2013) Rat retinal transcriptome: effects of aging and AMD-like retinopathy, Cell Cycle, 12, 1745-1761, doi: 10.4161/cc.24825.

12. Muraleva, N. A., Ofitserov, E. N., Tikhonov, V. P., and Kolosova, N. G. (2012) Efficacy of glucosamine alendronate alone and in combination with dihydroquercetin for treatment of osteoporosis in animal model, Ind. J. Med. Res., 135, 221-227.

13. Vays, V. B., Eldarov, C. M., Vangely, I. M., Kolosova, N. G., Bakeeva, L. E., et al. (2014) Antioxidant SkQ1 delays sarcopenia-associated damage of mitochondrial ultrastructure, Aging, 6, 140-148, doi: 10.18632/aging.100636.

14. Kolosova, N. G., Shcheglova, T. V., Sergeeva, S. V., and Loskutova, L. V. (2006) Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats, Neurobiol. Aging, 27, 1289-1297, doi: 10.1016/j.neurobiolaging.2005.07.022.

15. Kolosova, N. G., Aidagulova, S. V., Nepomnyashchikh, G. I., Shabalina, I. G., and Shalbueva, N. I. (2001) Dynamics of structural and functional changes in hepatocyte mitochondria of senescence-accelerated OXYS rats, Bull. Exp. Biol. Med., 132, 814-819, doi: 10.1023/a:1013014919721.

16. El’darov, C., Vays, V. B., Vangeli, I. M., Kolosova, N. G., and Bakeeva, L. E. (2015) Morphometric examination of mitochondrial ultrastructure in aging cardiomyocytes, Biochemistry (Moscow), 80, 604-609, doi: 10.1134/S0006297915050132.

17. Tyumentsev, M. A., Stefanova, N. A., Muraleva, N. A., Rumyantseva, Y. V., Kiseleva, E., et al. (2018) Mitochondrial dysfunction as a predictor and driver of Alzheimer’s disease-like pathology in OXYS rats, J. Alzheimer’s Dis., 63, 1075-1088, doi: 10.3233/JAD-180065.

18. Telegina, D. V., Korbolina, E. E., Ershov, N. I., Kolosova, N. G., and Kozhevnikova, O. S. (2015) Identification of functional networks associated with cell death in the retina of OXYS rats during the development of retinopathy, Cell Cycle, 14, 3544-3556, doi: 10.1080/15384101.2015.1080399.

19. Stefanova, N. A., Ershov, N. I., Maksimova, K. Y., Muraleva, N. A., Tyumentsev, M. A., et al. (2019) The rat prefrontal-cortex transcriptome: effects of aging and sporadic Alzheimer’s disease-like pathology, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 74, 33-43, doi: 10.1093/gerona/gly198.

20. Stefanova, N. A., Ershov, N. I., and Kolosova, N. G. (2019) Suppression of Alzheimer’s disease-like pathology progression by mitochondria-targeted antioxidant SkQ1: a transcriptome profiling study, Oxid. Med. Cell. Longev., 2019, 3984906, doi: 10.1155/2019/3984906.

21. Harman, D. (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954-2009, Biogerontology, 10, 773-781, doi: 10.1007/s10522-009-9234-2.

22. Payne, B. A., and Chinnery, P. F. (2015) Mitochondrial dysfunction in aging: much progress but many unresolved questions, Biochim. Biophys. Acta, 1847, 1347-1353, doi: 10.1016/j.bbabio.2015.05.022.

23. Ristow, M., and Schmeisser, K. (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS), Dose Response, 12, 288-341, doi: 10.2203/dose-response.13-035.Ristow.

24. Correia-Melo, C., and Passos, J. F. (2015) Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta, 1847, 1373-1379, doi: 10.1016/j.bbabio.2015.05.017.

25. Gonzalez-Freire, M., de Cabo, R., Bernier, M., Sollott, S. J., Fabbri, E., et al. (2015) Reconsidering the role of mitochondria in aging, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 70, 1334-1342, doi: 10.1093/gerona/glv070.

26. Ziegler, D. V., Wiley, C. D., and Velarde, M. C. (2015) Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging, Aging Cell, 14, 1-7, doi: 10.1111/acel.12287.

27. Tong, Y., Zhang, Z., and Wang, S. (2022) Role of mitochondria in retinal pigment epithelial aging and degeneration, Front. Aging, 3, 926627, doi: 10.3389/fragi.2022.926627.

28. Devyatkin, V. A., Redina, O. E., Kolosova, N. G., and Muraleva, N. A. (2020) Single-nucleotide polymorphisms associated with the senescence-accelerated phenotype of OXYS rats: a focus on Alzheimer’s disease-like and age-related-macular-degeneration-like pathologies, J. Alzheimer’s Dis., 73, 1167-1183, doi: 10.3233/JAD-190956.

29. Devyatkin, V. A., Muraleva, N. A., and Kolosova, N. G. (2020) Identification of single-nucleotide polymorphisms in mitochondria-associated genes capable of affecting the development of hypertrophic cardiomyopathy in senescence-accelerated OXYS rats, Adv. Gerontol., 10, 121-127, doi: 10.1134/S2079057020020058.

30. Liang, Z., Dong, X., Zhang, Z., Zhang, Q., and Zhao, Y. (2022) Age-related thymic involution: Mechanisms and functional impact, Aging Cell, 21, e13671, doi: 10.1111/acel.13671.

31. Caputo, M., Pigni, S., Agosti, E., Daffara, T., Ferrero, A., et al. (2021) Regulation of GH and GH signaling by nutrients, Cells, 10, 1376, doi: 10.3390/cells10061376.

32. Bartke, A., Sun, L. Y., and Longo, V. (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity, Physiol. Rev., 93, 571-598, doi: 10.1152/physrev.00006.2012.

33. Kolosova, N. G., Stefanova, N. A., Muraleva, N. A., and Skulachev, V. P. (2012) The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats, Aging, 4, 686-694, doi: 10.18632/aging.100493.

34. Sáez, J. M. (2012) Possible usefulness of growth hormone/insulin-like growth factor-I axis in Alzheimer’s disease treatment, Endocr. Metab. Immune Disord. Drug Targets, 12, 274-286, doi: 10.2174/187153012802002857.

35. Румянцева Ю. В., Фурсова А. Ж., Рябчикова Е. И., Колосова Н. Г. (2014) Развитие в онтогенезе преждевременно стареющих крыс OXYS катаракты – базового признака их селекции, Успехи геронтологии, 27, 637-644.

36. Kolosova, N. G., Lebedev, P. A., Aidagulova, S. V., and Morozkova, T. S. (2003) OXYS rats as a model of senile cataract, Bull. Exp. Biol. Med., 136, 415-419, doi: 10.1023/b:bebm.0000010967.24302.78.

37. Rumyantseva, Y. V., Fursova, A., Fedoseeva, L. A., and Kolosova, N. G. (2008) Changes in physicochemical parameters and alpha-crystallin expression in the lens during cataract development in OXYS rats, Biochemistry (Moscow), 73, 1176-1182, doi: 10.1134/s0006297908110023.

38. Rumyantseva, Y. V., Ryabchikova, E. I., Fursova, A. Z., and Kolosova, N. G. (2015) Ameliorative effects of SkQ1 eye drops on cataractogenesis in senescence-accelerated OXYS rats, Graefe’s Arch. Clin. Exp. Ophthalmol., 253, 237-248, doi: 10.1007/s00417-014-2806-0.

39. Snytnikova, O. A., Tsentalovich, Y. P., Stefanova, N. A., Fursova, A., Kaptein, R., et al. (2012) The therapeutic effect of mitochondria-targeted antioxidant SkQ1 and Cistanche deserticola is associated with increased levels of tryptophan and kynurenine in the rat lens, Doklady. Biochem. Biophys., 447, 300-303, doi: 10.1134/S1607672912060087.

40. Demarais, N. J., Donaldson, P. J., and Grey, A. C. (2019) Age-related spatial differences of human lens UV filters revealed by negative ion mode MALDI imaging mass spectrometry, Exp. Eye Res., 184, 146-151, doi: 10.1016/j.exer.2019.04.016.

41. Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., et al. (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals, Biochemistry (Moscow), 73, 1317-1328, doi: 10.1134/s0006297908120043.

42. Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., et al. (2009) An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437-461, doi: 10.1016/j.bbabio.2008.12.008.

43. Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., et al. (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies, Curr. Drug Targets, 12, 800-826, doi: 10.2174/138945011795528859.

44. Petrov, A., Perekhvatova, N., Skulachev, M., Stein, L., and Ousler, G. (2016) SkQ1 ophthalmic solution for dry eye treatment: results of a phase 2 safety and efficacy clinical study in the environment and during challenge in the controlled adverse environment model, Adv. Ther., 33, 96-115, doi: 10.1007/s12325-015-0274-5.

45. Blasiak, J., Sobczuk, P., Pawlowska, E., and Kaarniranta, K. (2022) Interplay between aging and other factors of the pathogenesis of age-related macular degeneration, Ageing Res. Rev., 81, 101735, doi: 10.1016/j.arr.2022.101735.

46. Jager, R. D., Mieler, W. F., and Miller, J. W. (2008) Age-related macular degeneration, New Engl. J. Med., 358, 2606-2617, doi: 10.1056/NEJMra0801537.

47. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Martin, D. F., Maguire, M. G., Fine, S. L., Ying, G. S., Jaffe, G. J., et al. (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results, Ophthalmology, 119, 1388-1398, doi: 10.1016/j.ophtha.2012.03.053.

48. Camelo, S., Latil, M., Veillet, S., Dilda, P. J., and Lafont, R. (2020) Beyond AREDS formulations, what is next for intermediate age-related macular degeneration (iAMD) treatment? Potential benefits of antioxidant and anti-inflammatory apocarotenoids as neuroprotectors, Oxid. Med. Cell. Longev, 2020, 4984927, doi: 10.1155/2020/4984927.

49. Wang, S., and Tang, Y. J. (2021) Sulforaphane ameliorates amyloid-β-induced inflammatory injury by suppressing the PARP1/SIRT1 pathway in retinal pigment epithelial cells, Bioengineered, 12, 7079-7089, doi: 10.1080/21655979.2021.1976503.

50. Kolosova, N. G., Muraleva, N. A., Zhdankina, A. A., Stefanova, N. A., Fursova, A. Z., et al. (2012) Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats, Am. J. Pathol., 181, 472-477, doi: 10.1016/j.ajpath.2012.04.018.

51. Telegina, D. V., Kozhevnikova, O. S., Bayborodin, S. I., and Kolosova, N. G. (2017) Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats, Sci. Rep., 7, 41533, doi: 10.1038/srep41533.

52. Telegina, D. V., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2020) Autophagy as a target for the retinoprotective effects of the mitochondria-targeted antioxidant SkQ1, Biochemistry (Moscow), 85, 1640-1649, doi: 10.1134/S0006297920120159.

53. Telegina, D. V., Kolosova, N. G., and Kozhevnikova, O. S. (2019) Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina, BMC Med. Genomics, 12 (Suppl 2), 48, doi: 10.1186/s12920-019-0493-8.

54. Kozhevnikova, O. S., Telegina, D. V., Tyumentsev, M. A., and Kolosova, N. G. (2019) Disruptions of autophagy in the rat retina with age during the development of age-related-macular-degeneration-like retinopathy, Int. J. Mol. Sci., 20, 4804, doi: 10.3390/ijms20194804.

55. Telegina, D. V., Antonenko, A. K., Fursova, A. Z., and Kolosova, N. G. (2022) The glutamate/GABA system in the retina of male rats: effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ1, Biogerontology, 23, 571-585, doi: 10.1007/s10522-022-09983-w.

56. Kozhevnikova, O. S., Telegina, D. V., Devyatkin, V. A., and Kolosova, N. G. (2018) Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats, Biogerontology, 19, 223-235, doi: 10.1007/s10522-018-9751-y.

57. Muraleva, N. A., Kozhevnikova, O. S., Zhdankina, A. A., Stefanova, N. A., Karamysheva, T. V., et al. (2014) The mitochondria-targeted antioxidant SkQ1 restores αB-crystallin expression and protects against AMD-like retinopathy in OXYS rats, Cell Cycle, 13, 3499-3505, doi: 10.4161/15384101.2014.958393.

58. Markovets, A. M., Fursova, A. Z., and Kolosova, N. G. (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression, PLoS One, 6, e21682, doi: 10.1371/journal.pone.0021682.

59. Saprunova, V. B., Pilipenko, D. I., Alexeevsky, A. V., Fursova, A., Kolosova, N. G., et al. (2010) Lipofuscin granule dynamics during development of age-related macular degeneration, Biochemistry (Moscow), 75, 130-138, doi: 10.1134/s0006297910020021.

60. Saprunova, V. B., Lelekova, M. A., Kolosova, N. G., and Bakeeva, L. E. (2012) SkQ1 slows development of age-dependent destructive processes in retina and vascular layer of eyes of wistar and OXYS rats, Biochemistry (Moscow), 77, 648-658, doi: 10.1134/S0006297912060120.

61. Muraleva, N. A., Kozhevnikova, O. S., Fursova, A. Z., and Kolosova, N. G. (2019) Suppression of AMD-like pathology by mitochondria-targeted antioxidant SkQ1 is associated with a decrease in the accumulation of amyloid β and in mTOR activity, Antioxidants, 8, 177, doi: 10.3390/antiox8060177.

62. Papadopoli, D., Boulay, K., Kazak, L., Pollak, M., Mallette, F., et al. (2019) mTOR as a central regulator of lifespan and aging, F1000Research, 8, 998, doi: 10.12688/f1000research.17196.1.

63. Swerdlow, R. H., and Khan, S. M. (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease, Med. Hypotheses, 63, 8-20, doi: 10.1016/j.mehy.2003.12.045.

64. Stefanova, N. A., Muraleva, N. A., Maksimova, K. Y., Rudnitskaya, E. A., Kiseleva, E., et al. (2016) An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology, Aging, 8, 2713-2733, doi: 10.18632/aging.101054.

65. Kolosova, N. G., Tyumentsev, M. A., Muraleva, N. A., Kiseleva, E., Vitovtov, A. O., et al. (2017) Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mitochondrial deterioration, Curr. Alzheimer’s Res., 14, 1283-1292, doi: 10.2174/1567205014666170621111033.

66. Bakeeva, L. E., Eldarov, C. M., Vangely, I. M., Kolosova, N. G., and Vays, V. B. (2016) Mitochondria-targeted antioxidant SkQ1 reduces age-related alterations in the ultrastructure of the lacrimal gland, Oncotarget, 7, 80208-80222, doi: 10.18632/oncotarget.13303.

67. Guo, Y. J., Pan, W. W., Liu, S. B., Shen, Z. F., Xu, Y., et al. (2020) ERK/MAPK signalling pathway and tumorigenesis, Exp. Ther. Med., 19, 1997-2007, doi: 10.3892/etm.2020.8454.

68. Dhapola, R., Hota, S. S., Sarma, P., Bhattacharyya, A., Medhi, B., et al. (2021) Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease, Inflammopharmacology, 29, 1669-1681, doi: 10.1007/s10787-021-00889-6.

69. Thakur, S., Dhapola, R., Sarma, P., Medhi, B., and Reddy, D. H. (2022) Neuroinflammation in Alzheimer’s disease: current progress in molecular signaling and therapeutics, Inflammation, doi: 10.1007/s10753-022-01721-1.

70. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2019) p38 MAPK-dependent alphaB-crystallin phosphorylation in Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 119, 45-52, doi: 10.1016/j.exger.2019.01.017.

71. Muraleva, N. A., Stefanova, N. A., and Kolosova, N. G. (2020) SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease-like pathology in OXYS rats, Antioxidants, 9, 676, doi: 10.3390/antiox9080676.

72. Khezri, M. R., Yousefi, K., Esmaeili, A., and Ghasemnejad-Berenji, M. (2022) The role of ERK1/2 pathway in the pathophysiology of Alzheimer’s disease: an overview and update on new developments, Cell. Mol. Neurobiol., doi: 10.1007/s10571-022-01191-x.

73. Iroegbu, J. D., Ijomone, O. K., Femi-Akinlosotu, O. M., and Ijomone, O. M. (2021) ERK/MAPK signalling in the developing brain: perturbations and consequences, Neurosci. Biobehavioral Rev., 131, 792-805, doi: 10.1016/j.neubiorev.2021.10.009.

74. Kamat, P. K., Kalani, A., Rai, S., Swarnkar, S., Tota, S., et al. (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies, Mol. Neurobiol., 53, 648-661, doi: 10.1007/s12035-014-9053-6.

75. Muraleva, N. A., Kolosova, N. G., and Stefanova, N. A. (2021) MEK1/2-ERK pathway alterations as a therapeutic target in sporadic Alzheimer’s disease: a study in senescence-accelerated OXYS rats, Antioxidants, 10, 1058, doi: 10.3390/antiox10071058.

76. Soreq, L., UK Brain Expression Consortium, North American Brain Expression Consortium, Rose, J., Soreq, E., Hardy, J., Trabzuni, D., Cookson, M. R., et al. (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging, Cell Rep., 18, 557-570, doi: 10.1016/j.celrep.2016.12.011.

77. Salas, I. H., Burgado, J., and Allen, N. J. (2020) Glia: victims or villains of the aging brain? Neurobiol. Disease, 143, 105008, doi: 10.1016/j.nbd.2020.105008.

78. Uddin, M. S., and Lim, L. W. (2022) Glial cells in Alzheimer’s disease: from neuropathological changes to therapeutic implications, Ageing Res. Rev., 78, 101622, doi: 10.1016/j.arr.2022.101622.

79. Rudnitskaya, E. A., Kozlova, T. A., Burnyasheva, A. O., Kolosova, N. G., and Stefanova, N. A. (2019) Alterations of hippocampal neurogenesis during development of Alzheimer’s disease-like pathology in OXYS rats, Exp. Gerontol., 115, 32-45, doi: 10.1016/j.exger.2018.11.008.

80. Rudnitskaya, E. A., Kozlova, T. A., Burnyasheva, A. O., Tarasova, A. E., Pankova, T. M., et al. (2020) Features of postnatal hippocampal development in a rat model of sporadic Alzheimer’s disease, Front. Neurosci., 14, 533, doi: 10.3389/fnins.2020.00533.

81. Rudnitskaya, E. A., Burnyasheva, A. O., Kozlova, T. A., Peunov, D. A., Kolosova, N. G., et al. (2022) Changes in glial support of the hippocampus during the development of an Alzheimer’s disease-like pathology and their correction by mitochondria-targeted Antioxidant SkQ1, Int. J. Mol. Sci., 23, 1134, doi: 10.3390/ijms23031134.