БИОХИМИЯ, 2022, том 87, вып. 12, с. 1897–1915

УДК 577.24

Возрастные изменения внеклеточного матрикса

Обзор

© 2022 З.Г. Гуватова 1,2, П.В. Борисов 1, А.А. Алексеев 2, А.А. Москалев 1,2*amoskalev@list.ru

Институт молекулярной биологии имени В.А. Энгельгардта РАН, 119991 Москва, Россия

ФГАОУ ВО «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Минздрава России, Российский геронтологический научно-клинический центр, 129226 Москва, Россия

Поступила в редакцию 29.08.2022
После доработки 14.11.2022
Принята к публикации 14.11.2022

DOI: 10.31857/S0320972522120107

КЛЮЧЕВЫЕ СЛОВА: внеклеточный матрикс, старение.

Аннотация

Внеклеточный матрикс (ВКМ) представляет собой внеклеточную структуру ткани, которая, помимо механической поддержки клеток, участвует в регуляции многих клеточных процессов, включая транспорт химических веществ, рост, миграцию, дифференцировку и клеточное старение. Возрастные изменения в структуре и составе матрикса и растущая с возрастом жесткость ВКМ сказываются на функционировании многих тканей и способствуют развитию различных патологических состояний. В данном обзоре рассматриваются возрастные изменения ВКМ в различных тканях и органах, в частности, обсуждается влияние на старение.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 17-74-30030).

Вклад авторов

Москалев А.А. – разработка концепции; Гуватова З.Г. – подготовка и редактирование текста, утверждение окончательного варианта; Борисов П.В. – подготовка и редактирование текста; Алексеев А.А. – визуализация.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Fedintsev, A., and Moskalev, A. (2020) Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging, Ageing Res. Rev., 62, 101097, doi: 10.1016/j.arr.2020.101097.

2. Bonnans, C., Chou, J., and Werb, Z. (2014) Remodelling the extracellular matrix in development and disease, Nat. Rev. Mol. Cell Biol., 15, 786-801, doi: 10.1038/nrm3904.

3. Bateman, J. F., Boot-Handford, R. P., and Lamande, S. R. (2009) Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations, Nat. Rev. Genet., 10, 173-183, doi: 10.1038/nrg2520.

4. Brownlee, M., Cerami, A., and Vlassara, H. (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications, N. Engl. J. Med., 318, 1315-1321, doi: 10.1056/NEJM198805193182007.

5. Li, Z., Wang, X., Hong, T. P., Wang, H. J., Gao, Z. Y., and Wan, M. (2021) Advanced glycosylation end products inhibit the proliferation of bone-marrow stromal cells through activating MAPK pathway, Eur. J. Med. Res., 26, 94, doi: 10.1186/s40001-021-00559-x.

6. Omolaoye, T. S., and du Plessis, S. S. (2020) Male infertility: A proximate look at the advanced glycation end products, Reprod. Toxicol., 93, 169-177, doi: 10.1016/j.reprotox.2020.02.002.

7. Verzijl, N., DeGroot, J., Thorpe, S. R., Bank, R. A., Shaw, J. N., Lyons, T. J., Bijlsma, J. W., Lafeber, F. P., Baynes, J. W., and TeKoppele, J. M. (2000) Effect of collagen turnover on the accumulation of advanced glycation end products, J. Biol. Chem., 275, 39027-39031, doi: 10.1074/jbc.M006700200.

8. Humphrey, J. D., Dufresne, E. R., and Schwartz, M. A. (2014) Mechanotransduction and extracellular matrix homeostasis, Nat. Rev. Mol. Cell Biol., 15, 802-812, doi: 10.1038/nrm3896.

9. Zhang, Q., Ames, J. M., Smith, R. D., Baynes, J. W., and Metz, T. O. (2009) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease, J. Proteome Res., 8, 754-769, doi: 10.1021/pr800858h.

10. Muthyalaiah, Y. S., Jonnalagadda, B., John, C. M., and Arockiasamy, S. (2021) Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression, Glycoconj. J., 38, 717-734, doi: 10.1007/s10719-021-10031-x.

11. Doue, M., Okwieka, A., Berquand, A., Gorisse, L., Maurice, P., Velard, F., Terryn, C., Molinari, M., Duca, L., Pietrement, C., Gillery, P., and Jaisson, S. (2021) Carbamylation of elastic fibers is a molecular substratum of aortic stiffness, Sci. Rep., 11, 17827, doi: 10.1038/s41598-021-97293-5.

12. Gorisse, L., Pietrement, C., Vuiblet, V., Schmelzer, C. E., Kohler, M., Duca, L., Debelle, L., Fornes, P., Jaisson, S., and Gillery, P. (2016) Protein carbamylation is a hallmark of aging, Proc. Natl. Acad. Sci. USA, 113, 1191-1196, doi: 10.1073/pnas.1517096113.

13. Barkovskaya, A., Buffone, A., Jr., Zidek, M., and Weaver, V. M. (2020) Proteoglycans as mediators of cancer tissue mechanics, Front. Cell. Dev. Biol., 8, 569377, doi: 10.3389/fcell.2020.569377.

14. Kular, J. K., Basu, S., and Sharma, R. I. (2014) The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering, J. Tissue Eng., 5, 2041731414557112, doi: 10.1177/2041731414557112.

15. Theocharis, A. D., Skandalis, S. S., Gialeli, C., and Karamanos, N. K. (2016) Extracellular matrix structure, Adv. Drug Deliv. Rev., 97, 4-27, doi: 10.1016/j.addr.2015.11.001.

16. Cui, N., Hu, M., and Khalil, R. A. (2017) Biochemical and biological attributes of matrix metalloproteinases, Prog. Mol. Biol. Transl. Sci., 147, 1-73, doi: 10.1016/bs.pmbts.2017.02.005.

17. Naba, A., Clauser, K. R., Ding, H., Whittaker, C. A., Carr, S. A., and Hynes, R. O. (2016) The extracellular matrix: tools and insights for the “omics” era, Matrix Biol., 49, 10-24, doi: 10.1016/j.matbio.2015.06.003.

18. Birch, H. L. (2018) Extracellular matrix and ageing, Subcell. Biochem., 90, 169-190, doi: 10.1007/978-981-13-2835-0_7.

19. Zhang, C., Zhen, Y. Z., Lin, Y. J., Liu, J., Wei, J., Xu, R., and Hu, G. (2014) KNDC1 knockdown protects human umbilical vein endothelial cells from senescence, Mol. Med. Rep., 10, 82-88, doi: 10.3892/mmr.2014.2201.

20. Carrino, D. A., Sorrell, J. M., and Caplan, A. I. (2000) Age-related changes in the proteoglycans of human skin, Arch. Biochem. Biophys., 373, 91-101, doi: 10.1006/abbi.1999.1545.

21. Li, M., Li, X., Liu, B., Lv, L., Wang, W., Gao, D., Zhang, Q., Jiang, J., Chai, M., Yun, Z., Tan, Y., Gong, F., Wu, Z., Zhu, Y., Ma, J., and Leng, L. (2021) Time-resolved extracellular matrix atlas of the developing human skin dermis, Front. Cell. Dev. Biol., 9, 783456, doi: 10.3389/fcell.2021.783456.

22. Angelidis, I., Simon, L. M., Fernandez, I. E., Strunz, M., Mayr, C. H., Greiffo, F. R., Tsitsiridis, G., Ansari, M., Graf, E., Strom, T. M., Nagendran, M., Desai, T., Eickelberg, O., Mann, M., Theis, F. J., and Schiller, H. B. (2019) An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics, Nat. Commun., 10, 963, doi: 10.1038/s41467-019-08831-9.

23. Elowsson Rendin, L., Lofdahl, A., Ahrman, E., Muller, C., Notermans, T., Michalikova, B., Rosmark, O., Zhou, X. H., Dellgren, G., Silverborn, M., Bjermer, L., Malmstrom, A., Larsson-Callerfelt, A. K., Isaksson, H., Malmstrom, J., and Westergren-Thorsson, G. (2019) Matrisome properties of scaffolds direct fibroblasts in idiopathic pulmonary fibrosis, Int. J. Mol. Sci., 20, 4013, doi: 10.3390/ijms20164013.

24. DeSilva, U., D’Arcangelo, G., Braden, V. V., Chen, J., Miao, G. G., Curran, T., and Green, E. D. (1997) The human reelin gene: isolation, sequencing, and mapping on chromosome 7, Genome Res., 7, 157-164, doi: 10.1101/gr.7.2.157.

25. Lidon, L., Urrea, L., Llorens, F., Gil, V., Alvarez, I., Diez-Fairen, M., Aguilar, M., Pastor, P., Zerr, I., Alcolea, D., Lleo, A., Vidal, E., Gavin, R., Ferrer, I., and Del Rio, J. A. (2020) Disease-specific changes in reelin protein and mRNA in neurodegenerative diseases, Cells, 9, 1252, doi: 10.3390/cells9051252.

26. Chin, J., Massaro, C. M., Palop, J. J., Thwin, M. T., Yu, G. Q., Bien-Ly, N., Bender, A., and Mucke, L. (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease, J. Neurosci., 27, 2727-2733, doi: 10.1523/JNEUROSCI.3758-06.2007.

27. Sykova, E., Mazel, T., Hasenohrl, R. U., Harvey, A. R., Simonova, Z., Mulders, W. H., and Huston, J. P. (2002) Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus, Hippocampus, 12, 269-279, doi: 10.1002/hipo.1101.

28. Lofaro, F. D., Cisterna, B., Lacavalla, M. A., Boschi, F., Malatesta, M., Quaglino, D., Zancanaro, C., and Boraldi, F. (2021) Age-related changes in the matrisome of the mouse skeletal muscle, Int. J. Mol. Sci., 22, 10564, doi: 10.3390/ijms221910564.

29. Stearns-Reider, K. M., D’Amore, A., Beezhold, K., Rothrauff, B., Cavalli, L., Wagner, W. R., Vorp, D. A., Tsamis, A., Shinde, S., Zhang, C., Barchowsky, A., Rando, T. A., Tuan, R. S., and Ambrosio, F. (2017) Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion, Aging Cell, 16, 518-528, doi: 10.1111/acel.12578.

30. Delire, B., Lebrun, V., Selvais, C., Henriet, P., Bertrand, A., Horsmans, Y., and Leclercq, I. A. (2016) Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling, Aging (Albany NY), 9, 98-113, doi: 10.18632/aging.101124.

31. Yang, L., Kwon, J., Popov, Y., Gajdos, G. B., Ordog, T., Brekken, R. A., Mukhopadhyay, D., Schuppan, D., Bi, Y., Simonetto, D., and Shah, V. H. (2014) Vascular endothelial growth factor promotes fibrosis resolution and repair in mice, Gastroenterology, 146, 1339-1350.e1331, doi: 10.1053/j.gastro.2014.01.061.

32. Ikenaga, N., Peng, Z. W., Vaid, K. A., Liu, S. B., Yoshida, S., Sverdlov, D. Y., Mikels-Vigdal, A., Smith, V., Schuppan, D., and Popov, Y. V. (2017) Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal, Gut, 66, 1697-1708, doi: 10.1136/gutjnl-2016-312473.

33. Schnabl, B., Purbeck, C. A., Choi, Y. H., Hagedorn, C. H., and Brenner, D. (2003) Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype, Hepatology, 37, 653-664, doi: 10.1053/jhep.2003.50097.

34. Krizhanovsky, V., Yon, M., Dickins, R. A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., and Lowe, S. W. (2008) Senescence of activated stellate cells limits liver fibrosis, Cell, 134, 657-667, doi: 10.1016/j.cell.2008.06.049.

35. Chiao, Y. A., Ramirez, T. A., Zamilpa, R., Okoronkwo, S. M., Dai, Q., Zhang, J., Jin, Y. F., and Lindsey, M. L. (2012) Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice, Cardiovasc. Res., 96, 444-455, doi: 10.1093/cvr/cvs275.

36. Toba, H., de Castro Bras, L. E., Baicu, C. F., Zile, M. R., Lindsey, M. L., and Bradshaw, A. D. (2016) Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium, Am. J. Physiol. Endocrinol. Metab., 310, E1027-1035, doi: 10.1152/ajpendo.00040.2016.

37. Hou, C. L., Wang, M. J., Sun, C., Huang, Y., Jin, S., Mu, X. P., Chen, Y., and Zhu, Y. C. (2016) Protective effects of hydrogen sulfide in the ageing kidney, Oxid. Med. Cell. Longev., 2016, 7570489, doi: 10.1155/2016/7570489.

38. Eikmans, M., Baelde, H. J., de Heer, E., and Bruijn, J. A. (2001) Effect of age and biopsy site on extracellular matrix mRNA and protein levels in human kidney biopsies, Kidney Int., 60, 974-981, doi: 10.1046/j.1523-1755.2001.060003974.x.

39. Oelusarz, A., Nichols, L. A., Grunz-Borgmann, E. A., Chen, G., Akintola, A. D., Catania, J. M., Burghardt, R. C., Trzeciakowski, J. P., and Parrish, A. R. (2013) Overexpression of MMP-7 increases collagen 1A2 in the aging kidney, Physiol. Rep., 1, e00090, doi: 10.1002/phy2.90.

40. Zhang, X., Chen, X., Hong, Q., Lin, H., Zhu, H., Liu, Q., Wang, J., Xie, Y., Shang, X., Shi, S., Lu, Y., and Yin, Z. (2006) TIMP-1 promotes age-related renal fibrosis through upregulating ICAM-1 in human TIMP-1 transgenic mice, J. Gerontol. A Biol. Sci. Med. Sci., 61, 1130-1143, doi: 10.1093/gerona/61.11.1130.

41. Hultstrom, M., Leh, S., Paliege, A., Bachmann, S., Skogstrand, T., and Iversen, B. M. (2012) Collagen-binding proteins in age-dependent changes in renal collagen turnover: microarray analysis of mRNA expression, Physiol. Genomics, 44, 576-586, doi: 10.1152/physiolgenomics.00186.2011.

42. Schneider, R. R., Eng, D. G., Kutz, J. N., Sweetwyne, M. T., Pippin, J. W., and Shankland, S. J. (2017) Compound effects of aging and experimental FSGS on glomerular epithelial cells, Aging (Albany NY), 9, 524-546, doi: 10.18632/aging.101176.

43. Maric, C., Sandberg, K., and Hinojosa-Laborde, C. (2004) Glomerulosclerosis and tubulointerstitial fibrosis are attenuated with 17beta-estradiol in the aging Dahl salt sensitive rat, J. Am. Soc. Nephrol., 15, 1546-1556, doi: 10.1097/01.asn.0000128219.65330.ea.

44. Dengjel, J., Bruckner-Tuderman, L., and Nystrom, A. (2020) Skin proteomics – analysis of the extracellular matrix in health and disease, Expert Rev. Proteomics, 17, 377-391, doi: 10.1080/14789450.2020.1773261.

45. Haydont, V., Bernard, B. A., and Fortunel, N. O. (2019) Age-related evolutions of the dermis: clinical signs, fibroblast and extracellular matrix dynamics, Mech. Ageing Dev., 177, 150-156, doi: 10.1016/j.mad.2018.03.006.

46. Quan, T., Little, E., Quan, H., Qin, Z., Voorhees, J. J., and Fisher, G. J. (2013) Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: impact of altered extracellular matrix microenvironment on dermal fibroblast function, J. Invest. Dermatol., 133, 1362-1366, doi: 10.1038/jid.2012.509.

47. Qin, Z., Balimunkwe, R. M., and Quan, T. (2017) Age-related reduction of dermal fibroblast size upregulates multiple matrix metalloproteinases as observed in aged human skin in vivo, Br. J. Dermatol., 177, 1337-1348, doi: 10.1111/bjd.15379.

48. Tewari, A., Grys, K., Kollet, J., Sarkany, R., and Young, A. R. (2014) Upregulation of MMP12 and its activity by UVA1 in human skin: potential implications for photoaging, J. Invest. Dermatol., 134, 2598-2609, doi: 10.1038/jid.2014.173.

49. Parkinson, L. G., Toro, A., Zhao, H., Brown, K., Tebbutt, S. J., and Granville, D. J. (2015) Granzyme B mediates both direct and indirect cleavage of extracellular matrix in skin after chronic low-dose ultraviolet light irradiation, Aging Cell, 14, 67-77, doi: 10.1111/acel.12298.

50. Quan, T., Shao, Y., He, T., Voorhees, J. J., and Fisher, G. J. (2010) Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin, J. Invest. Dermatol., 130, 415-424, doi: 10.1038/jid.2009.224.

51. Shaulian, E., and Karin, M. (2002) AP-1 as a regulator of cell life and death, Nat. Cell. Biol., 4, E131-136, doi: 10.1038/ncb0502-e131.

52. Chiang, H. M., Chen, H. C., Chiu, H. H., Chen, C. W., Wang, S. M., and Wen, K. C. (2013) Neonauclea reticulata (Havil.) Merr stimulates skin regeneration after UVB exposure via ROS scavenging and modulation of the MAPK/MMPs/collagen pathway, Evid. Based Complement. Alternat. Med., 2013, 324864, doi: 10.1155/2013/324864.

53. Kim, J., Lee, C. W., Kim, E. K., Lee, S. J., Park, N. H., Kim, H. S., Kim, H. K., Char, K., Jang, Y. P., and Kim, J. W. (2011) Inhibition effect of Gynura procumbens extract on UV-B-induced matrix-metalloproteinase expression in human dermal fibroblasts, J. Ethnopharmacol., 137, 427-433, doi: 10.1016/j.jep.2011.04.072.

54. Lee, Y. R., Noh, E. M., Han, J. H., Kim, J. M., Hwang, J. K., Hwang, B. M., Chung, E. Y., Kim, B. S., Lee, S. H., Lee, S. J., and Kim, J. S. (2012) Brazilin inhibits UVB-induced MMP-1/3 expressions and secretions by suppressing the NF-kappaB pathway in human dermal fibroblasts, Eur. J. Pharmacol., 674, 80-86, doi: 10.1016/j.ejphar.2011.10.016.

55. Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., and Ohtsuki, M. (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis, Int. J. Mol. Sci., 17, 868, doi: 10.3390/ijms17060868.

56. Vicentini, F. T., He, T., Shao, Y., Fonseca, M. J., Verri, W. A., Jr., Fisher, G. J., and Xu, Y. (2011) Quercetin inhibits UV irradiation-induced inflammatory cytokine production in primary human keratinocytes by suppressing NF-kappaB pathway, J. Dermatol. Sci., 61, 162-168, doi: 10.1016/j.jdermsci.2011.01.002.

57. Brandenberger, C., and Muhlfeld, C. (2017) Mechanisms of lung aging, Cell Tissue Res., 367, 469-480, doi: 10.1007/s00441-016-2511-x.

58. Tsukui, T., Sun, K. H., Wetter, J. B., Wilson-Kanamori, J. R., Hazelwood, L. A., Henderson, N. C., Adams, T. S., Schupp, J. C., Poli, S. D., Rosas, I. O., Kaminski, N., Matthay, M. A., Wolters, P. J., and Sheppard, D. (2020) Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis, Nat. Commun., 11, 1920, doi: 10.1038/s41467-020-15647-5.

59. Huang, Y., Xie, Y., Abel, P. W., Wei, P., Plowman, J., Toews, M. L., Strah, H., Siddique, A., Bailey, K. L., and Tu, Y. (2020) TGF-beta1-induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression, Biochem. Pharmacol., 180, 114172, doi: 10.1016/j.bcp.2020.114172.

60. Schiller, H. B., Fernandez, I. E., Burgstaller, G., Schaab, C., Scheltema, R. A., Schwarzmayr, T., Strom, T. M., Eickelberg, O., and Mann, M. (2015) Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair, Mol. Syst. Biol., 11, 819, doi: 10.15252/msb.20156123.

61. Bell, T. J., Brand, O. J., Morgan, D. J., Salek-Ardakani, S., Jagger, C., Fujimori, T., Cholewa, L., Tilakaratna, V., Ostling, J., Thomas, M., Day, A. J., Snelgrove, R. J., and Hussell, T. (2019) Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis, Matrix Biol., 80, 14-28, doi: 10.1016/j.matbio.2018.06.006.

62. McQuattie-Pimentel, A. C., Ren, Z., Joshi, N., Watanabe, S., Stoeger, T., Chi, M., Lu, Z., Sichizya, L., Aillon, R. P., Chen, C. I., Soberanes, S., Chen, Z., Reyfman, P. A., Walter, J. M., Anekalla, K. R., Davis, J. M., Helmin, K. A., Runyan, C. E., Abdala-Valencia, H., Nam, K., et al. (2021) The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging, J. Clin. Invest., 131, e140299, doi: 10.1172/JCI140299.

63. Sicard, D., Haak, A. J., Choi, K. M., Craig, A. R., Fredenburgh, L. E., and Tschumperlin, D. J. (2018) Aging and anatomical variations in lung tissue stiffness, Am. J. Physiol. Lung Cell Mol. Physiol., 314, L946-L955, doi: 10.1152/ajplung.00415.2017.

64. Decaris, M. L., Gatmaitan, M., FlorCruz, S., Luo, F., Li, K., Holmes, W. E., Hellerstein, M. K., Turner, S. M., and Emson, C. L. (2014) Proteomic analysis of altered extracellular matrix turnover in bleomycin-induced pulmonary fibrosis, Mol. Cell Proteomics, 13, 1741-1752, doi: 10.1074/mcp.M113.037267.

65. Schiller, H. B., Mayr, C. H., Leuschner, G., Strunz, M., Staab-Weijnitz, C., Preisendorfer, S., Eckes, B., Moinzadeh, P., Krieg, T., Schwartz, D. A., Hatz, R. A., Behr, J., Mann, M., and Eickelberg, O. (2017) Deep proteome profiling reveals common prevalence of MZB1-positive plasma B cells in human lung and skin fibrosis, Am. J. Respir. Crit. Care Med., 196, 1298-1310, doi: 10.1164/rccm.201611-2263OC.

66. Song, I., and Dityatev, A. (2018) Crosstalk between glia, extracellular matrix and neurons, Brain Res. Bull., 136, 101-108, doi: 10.1016/j.brainresbull.2017.03.003.

67. Hayani, H., Song, I., and Dityatev, A. (2018) Increased excitability and reduced excitatory synaptic input into fast-spiking CA2 interneurons after enzymatic attenuation of extracellular matrix, Front. Cell Neurosci., 12, 149, doi: 10.3389/fncel.2018.00149.

68. Dauth, S., Grevesse, T., Pantazopoulos, H., Campbell, P. H., Maoz, B. M., Berretta, S., and Parker, K. K. (2016) Extracellular matrix protein expression is brain region dependent, J. Comp. Neurol., 524, 1309-1336, doi: 10.1002/cne.23965.

69. Reed, M. J., Damodarasamy, M., Pathan, J. L., Erickson, M. A., Banks, W. A., and Vernon, R. B. (2018) The effects of normal aging on regional accumulation of hyaluronan and chondroitin sulfate proteoglycans in the mouse brain, J. Histochem. Cytochem., 66, 697-707, doi: 10.1369/0022155418774779.

70. Yamada, J., Nadanaka, S., Kitagawa, H., Takeuchi, K., and Jinno, S. (2018) Increased synthesis of chondroitin sulfate proteoglycan promotes adult hippocampal neurogenesis in response to enriched environment, J. Neurosci., 38, 8496-8513, doi: 10.1523/JNEUROSCI.0632-18.2018.

71. Cope, E. C., and Gould, E. (2019) Adult neurogenesis, glia, and the extracellular matrix, Cell Stem Cell, 24, 690-705, doi: 10.1016/j.stem.2019.03.023.

72. David, L. S., Schachner, M., and Saghatelyan, A. (2013) The extracellular matrix glycoprotein tenascin-R affects adult but not developmental neurogenesis in the olfactory bulb, J. Neurosci., 33, 10324-10339, doi: 10.1523/JNEUROSCI.5728-12.2013.

73. Xu, J. C., Xiao, M. F., Jakovcevski, I., Sivukhina, E., Hargus, G., Cui, Y. F., Irintchev, A., Schachner, M., and Bernreuther, C. (2014) The extracellular matrix glycoprotein tenascin-R regulates neurogenesis during development and in the adult dentate gyrus of mice, J. Cell Sci., 127, 641-652, doi: 10.1242/jcs.137612.

74. Xie, K., Liu, Y., Hao, W., Walter, S., Penke, B., Hartmann, T., Schachner, M., and Fassbender, K. (2013) Tenascin-C deficiency ameliorates Alzheimer’s disease-related pathology in mice, Neurobiol. Aging, 34, 2389-2398, doi: 10.1016/j.neurobiolaging.2013.04.013.

75. Freitas, A., Aroso, M., Rocha, S., Ferreira, R., Vitorino, R., and Gomez-Lazaro, M. (2021) Bioinformatic analysis of the human brain extracellular matrix proteome in neurodegenerative disorders, Eur. J. Neurosci., 53, 4016-4033, doi: 10.1111/ejn.15316.

76. Morawski, M., Filippov, M., Tzinia, A., Tsilibary, E., and Vargova, L. (2014) ECM in brain aging and dementia, Prog. Brain Res., 214, 207-227, doi: 10.1016/B978-0-444-63486-3.00010-4.

77. Sun, Y., Xu, S., Jiang, M., Liu, X., Yang, L., Bai, Z., and Yang, Q. (2021) Role of the extracellular matrix in Alzheimer’s disease, Front. Aging Neurosci., 13, 707466, doi: 10.3389/fnagi.2021.707466.

78. Dayon, L., Nunez Galindo, A., Wojcik, J., Cominetti, O., Corthesy, J., Oikonomidi, A., Henry, H., Kussmann, M., Migliavacca, E., Severin, I., Bowman, G. L., and Popp, J. (2018) Alzheimer disease pathology and the cerebrospinal fluid proteome, Alzheimers Res. Ther., 10, 66, doi: 10.1186/s13195-018-0397-4.

79. Mohammadi, A., Rashidi, E., and Amooeian, V. G. (2018) Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia, Psychiatry Res., 265, 25-38, doi: 10.1016/j.psychres.2018.04.036.

80. Wang, S., Brunne, B., Zhao, S., Chai, X., Li, J., Lau, J., Failla, A. V., Zobiak, B., Sibbe, M., Westbrook, G. L., Lutz, D., and Frotscher, M. (2018) Trajectory analysis unveils Reelin’s role in the directed migration of granule cells in the dentate gyrus, J. Neurosci., 38, 137-148, doi: 10.1523/JNEUROSCI.0988-17.2017.

81. Bosch, C., Masachs, N., Exposito-Alonso, D., Martinez, A., Teixeira, C. M., Fernaud, I., Pujadas, L., Ulloa, F., Comella, J. X., DeFelipe, J., Merchan-Perez, A., and Soriano, E. (2016) Reelin regulates the maturation of dendritic spines, synaptogenesis and glial ensheathment of newborn granule cells, Cereb. Cortex, 26, 4282-4298, doi: 10.1093/cercor/bhw216.

82. Long, J. M., Perez, E. J., Roberts, J. A., Roberts, M. T., and Rapp, P. R. (2020) Reelin in the Years: decline in the number of reelin immunoreactive neurons in layer II of the entorhinal cortex in aged monkeys with memory impairment, Neurobiol. Aging, 87, 132-137, doi: 10.1016/j.neurobiolaging.2019.12.010.

83. Marckx, A. T., Fritschle, K. E., Calvier, L., and Herz, J. (2021) Reelin changes hippocampal learning in aging and Alzheimer’s disease, Behav. Brain Res., 414, 113482, doi: 10.1016/j.bbr.2021.113482.

84. Rogers, J. T., Rusiana, I., Trotter, J., Zhao, L., Donaldson, E., Pak, D. T., Babus, L. W., Peters, M., Banko, J. L., Chavis, P., Rebeck, G. W., Hoe, H. S., and Weeber, E. J. (2011) Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density, Learn Mem., 18, 558-564, doi: 10.1101/lm.2153511.

85. Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Y. I., Thompson, W., Kirkland, J. L., and Sandri, M. (2019) Sarcopenia: aging-related loss of muscle mass and function, Physiol. Rev., 99, 427-511, doi: 10.1152/physrev.00061.2017.

86. Csapo, R., Gumpenberger, M., and Wessner, B. (2020) Skeletal muscle extracellular matrix – what do we know about its composition, regulation, and physiological roles? A narrative review, Front. Physiol., 11, 253, doi: 10.3389/fphys.2020.00253.

87. Fry, C. S., Kirby, T. J., Kosmac, K., McCarthy, J. J., and Peterson, C. A. (2017) Myogenic progenitor cells control extracellular matrix production by fibroblasts during skeletal muscle hypertrophy, Cell Stem Cell, 20, 56-69, doi: 10.1016/j.stem.2016.09.010.

88. Zhang, W., Liu, Y., and Zhang, H. (2021) Extracellular matrix: an important regulator of cell functions and skeletal muscle development, Cell Biosci., 11, 65, doi: 10.1186/s13578-021-00579-4.

89. Lacraz, G., Rouleau, A. J., Couture, V., Sollrald, T., Drouin, G., Veillette, N., Grandbois, M., and Grenier, G. (2015) Increased stiffness in aged skeletal muscle impairs muscle progenitor cell proliferative activity, PLoS One, 10, e0136217, doi: 10.1371/journal.pone.0136217.

90. Liu, X., Gao, Y., Long, X., Hayashi, T., Mizuno, K., Hattori, S., Fujisaki, H., Ogura, T., Wang, D. O., and Ikejima, T. (2020) Type I collagen promotes the migration and myogenic differentiation of C2C12 myoblasts via the release of interleukin-6 mediated by FAK/NF-kappaB p65 activation, Food Funct., 11, 328-338, doi: 10.1039/c9fo01346f.

91. Mahdy, M. A. A. (2019) Skeletal muscle fibrosis: an overview, Cell Tissue Res., 375, 575-588, doi: 10.1007/s00441-018-2955-2.

92. Baghdadi, M. B., Castel, D., Machado, L., Fukada, S. I., Birk, D. E., Relaix, F., Tajbakhsh, S., and Mourikis, P. (2018) Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche, Nature, 557, 714-718, doi: 10.1038/s41586-018-0144-9.

93. Haus, J. M., Carrithers, J. A., Trappe, S. W., and Trappe, T. A. (2007) Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle, J. Appl. Physiol. (1985), 103, 2068-2076, doi: 10.1152/japplphysiol.00670.2007.

94. Hindle, A. G., Horning, M., Mellish, J. A., and Lawler, J. M. (2009) Diving into old age: muscular senescence in a large-bodied, long-lived mammal, the Weddell seal (Leptonychotes weddellii), J. Exp. Biol., 212, 790-796, doi: 10.1242/jeb.025387.

95. Kanazawa, Y., Nagano, M., Koinuma, S., Sugiyo, S., and Shigeyoshi, Y. (2021) Effects of aging on basement membrane-related gene expression of the skeletal muscle in rats, Biomed. Res., 42, 115-119, doi: 10.2220/biomedres.42.115.

96. Ducomps, C., Mauriege, P., Darche, B., Combes, S., Lebas, F., and Doutreloux, J. P. (2003) Effects of jump training on passive mechanical stress and stiffness in rabbit skeletal muscle: role of collagen, Acta Physiol. Scand., 178, 215-224, doi: 10.1046/j.1365-201X.2003.01109.x.

97. Svensson, R. B., Smith, S. T., Moyer, P. J., and Magnusson, S. P. (2018) Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons, Acta Biomater., 70, 270-280, doi: 10.1016/j.actbio.2018.02.005.

98. Chiappalupi, S., Sorci, G., Vukasinovic, A., Salvadori, L., Sagheddu, R., Coletti, D., Renga, G., Romani, L., Donato, R., and Riuzzi, F. (2020) Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia, J. Cachexia Sarcopenia Muscle, 11, 929-946, doi: 10.1002/jcsm.12561.

99. Sagheddu, R., Chiappalupi, S., Salvadori, L., Riuzzi, F., Donato, R., and Sorci, G. (2018) Targeting RAGE as a potential therapeutic approach to Duchenne muscular dystrophy, Hum. Mol. Genet., 27, 3734-3746, doi: 10.1093/hmg/ddy288.

100. Olson, L. C., Redden, J. T., Schwartz, Z., Cohen, D. J., and McClure, M. J. (2021) Advanced glycation end-products in skeletal muscle aging, Bioengineering (Basel), 8, 168, doi: 10.3390/bioengineering8110168.

101. Ramamurthy, B., and Larsson, L. (2013) Detection of an aging-related increase in advanced glycation end products in fast- and slow-twitch skeletal muscles in the rat, Biogerontology, 14, 293-301, doi: 10.1007/s10522-013-9430-y.

102. Inagaki, Y., and Okazaki, I. (2007) Emerging insights into transforming growth factor beta Smad signal in hepatic fibrogenesis, Gut, 56, 284-292, doi: 10.1136/gut.2005.088690.

103. Dewidar, B., Meyer, C., Dooley, S., and Meindl-Beinker, A. N. (2019) TGF-beta in hepatic Stellate cell activation and liver fibrogenesis – updated 2019, Cells, 8, 1419, doi: 10.3390/cells8111419.

104. Lachowski, D., Cortes, E., Rice, A., Pinato, D., Rombouts, K., and Del Rio Hernandez, A. (2019) Matrix stiffness modulates the activity of MMP-9 and TIMP-1 in hepatic stellate cells to perpetuate fibrosis, Sci. Rep., 9, 7299, doi: 10.1038/s41598-019-43759-6.

105. Conroy, K. P., Kitto, L. J., and Henderson, N. C. (2016) αv integrins: key regulators of tissue fibrosis, Cell Tissue Res., 365, 511-519, doi: 10.1007/s00441-016-2407-9.

106. Hinz, B. (2015) The extracellular matrix and transforming growth factor-beta1: tale of a strained relationship, Matrix Biol., 47, 54-65, doi: 10.1016/j.matbio.2015.05.006.

107. Giancotti, F. G., and Ruoslahti, E. (1999) Integrin signaling, Science, 285, 1028-1032, doi: 10.1126/science.285.5430.1028.

108. Henderson, N. C., and Sheppard, D. (2013) Integrin-mediated regulation of TGFbeta in fibrosis, Biochim. Biophys. Acta, 1832, 891-896, doi: 10.1016/j.bbadis.2012.10.005.

109. Heldin, C. H., and Westermark, B. (1999) Mechanism of action and in vivo role of platelet-derived growth factor, Physiol. Rev., 79, 1283-1316, doi: 10.1152/physrev.1999.79.4.1283.

110. Ogawa, S., Ochi, T., Shimada, H., Inagaki, K., Fujita, I., Nii, A., Moffat, M. A., Katragadda, M., Violand, B. N., Arch, R. H., and Masferrer, J. L. (2010) Anti-PDGF-B monoclonal antibody reduces liver fibrosis development, Hepatol. Res., 40, 1128-1141, doi: 10.1111/j.1872-034X.2010.00718.x.

111. Wang, Y., Gao, J., Zhang, D., Zhang, J., Ma, J., and Jiang, H. (2010) New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis, J. Hepatol., 53, 132-144, doi: 10.1016/j.jhep.2010.02.027.

112. Khurana, A., Sayed, N., Allawadhi, P., and Weiskirchen, R. (2021) It’s all about the spaces between cells: role of extracellular matrix in liver fibrosis, Ann. Transl. Med., 9, 728, doi: 10.21037/atm-20-2948.

113. Wang, Y., Yang, F., Xue, J., Zhou, X., Luo, L., Ma, Q., Chen, Y. F., Zhang, J., Zhang, S. L., and Zhao, L. (2017) Antischistosomiasis liver fibrosis effects of chlorogenic acid through IL-13/miR-21/Smad7 signaling interactions in vivo and in vitro, Antimicrob. Agents Chemother., 61, e01347-16, doi: 10.1128/AAC.01347-16.

114. Yang, F., Luo, L., Zhu, Z. D., Zhou, X., Wang, Y., Xue, J., Zhang, J., Cai, X., Chen, Z. L., Ma, Q., Chen, Y. F., Wang, Y. J., Luo, Y. Y., Liu, P., and Zhao, L. (2017) Chlorogenic acid inhibits liver fibrosis by blocking the miR-21-regulated TGF-beta1/Smad7 signaling pathway in vitro and in vivo, Front. Pharmacol., 8, 929, doi: 10.3389/fphar.2017.00929.

115. Shi, H., Shi, A., Dong, L., Lu, X., Wang, Y., Zhao, J., Dai, F., and Guo, X. (2016) Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress, Clin. Nutr., 35, 1366-1373, doi: 10.1016/j.clnu.2016.03.002.

116. Shi, H., Dong, L., Bai, Y., Zhao, J., Zhang, Y., and Zhang, L. (2009) Chlorogenic acid against carbon tetrachloride-induced liver fibrosis in rats, Eur. J. Pharmacol., 623, 119-124, doi: 10.1016/j.ejphar.2009.09.026.

117. Shi, H., Dong, L., Jiang, J., Zhao, J., Zhao, G., Dang, X., Lu, X., and Jia, M. (2013) Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway, Toxicology, 303, 107-114, doi: 10.1016/j.tox.2012.10.025.

118. Nwafor, E. O., Lu, P., Zhang, Y., Liu, R., Peng, H., Xing, B., Liu, Y., Li, Z., Zhang, K., Zhang, Y., and Liu, Z. (2022) Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer, Transl. Oncol., 15, 101294, doi: 10.1016/j.tranon.2021.101294.

119. Denic, A., Glassock, R. J., and Rule, A. D. (2016) Structural and functional changes with the aging kidney, Adv. Chronic Kidney Dis., 23, 19-28, doi: 10.1053/j.ackd.2015.08.004.

120. Lakatta, E. G. (2015) So! What’s aging? Is cardiovascular aging a disease? J. Mol. Cell. Cardiol., 83, 1-13, doi: 10.1016/j.yjmcc.2015.04.005.

121. Sataranatarajan, K., Feliers, D., Mariappan, M. M., Lee, H. J., Lee, M. J., Day, R. T., Yalamanchili, H. B., Choudhury, G. G., Barnes, J. L., Van Remmen, H., Richardson, A., and Kasinath, B. S. (2012) Molecular events in matrix protein metabolism in the aging kidney, Aging Cell, 11, 1065-1073, doi: 10.1111/acel.12008.

122. Randles, M., Lausecker, F., Kong, Q., Suleiman, H., Reid, G., Kolatsi-Joannou, M., Tian, P., Falcone, S., Davenport, B., Potter, P., Van Agtmael, T., Norman, J., Long, D., Humphries, M., Miner, J., and Lennon, R. (2021) Identification of an altered matrix signature in kidney aging and disease, J. Am. Soc. Nephrol., 32, 1713-1732, doi: 10.1681/ASN.2020101442.

123. Hewitson, T. D. (2012) Fibrosis in the kidney: is a problem shared a problem halved? Fibrogenesis Tissue Repair, 5, S14, doi: 10.1186/1755-1536-5-S1-S14.

124. Bolignano, D., Mattace-Raso, F., Sijbrands, E. J., and Zoccali, C. (2014) The aging kidney revisited: a systematic review, Ageing Res. Rev., 14, 65-80, doi: 10.1016/j.arr.2014.02.003.

125. Meng, X. M., and Lan, H. Y. (2018) Transforming growth factor-beta and renal fibrosis [in Chinese], Sheng Li Xue Bao, 70, 612-622.

126. Lin, C. H., Chen, J., Zhang, Z., Johnson, G. V., Cooper, A. J., Feola, J., Bank, A., Shein, J., Ruotsalainen, H. J., Pihlajaniemi, T. A., and Goligorsky, M. S. (2016) Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney, Kidney Int., 89, 1281-1292, doi: 10.1016/j.kint.2016.01.030.

127. Prat-Duran, J., Pinilla, E., Norregaard, R., Simonsen, U., and Buus, N. H. (2021) Transglutaminase 2 as a novel target in chronic kidney disease – methods, mechanisms and pharmacological inhibition, Pharmacol. Ther., 222, 107787, doi: 10.1016/j.pharmthera.2020.107787.

128. Paneni, F., Costantino, S., and Cosentino, F. (2015) Molecular pathways of arterial aging, Clin. Sci. (Lond), 128, 69-79, doi: 10.1042/CS20140302.

129. Jana, S., Hu, M., Shen, M., and Kassiri, Z. (2019) Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm, Exp. Mol. Med., 51, 1-15, doi: 10.1038/s12276-019-0286-3.

130. Hanada, K., Vermeij, M., Garinis, G. A., de Waard, M. C., Kunen, M. G., Myers, L., Maas, A., Duncker, D. J., Meijers, C., Dietz, H. C., Kanaar, R., and Essers, J. (2007) Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice, Circ. Res., 100, 738-746, doi: 10.1161/01.RES.0000260181.19449.95.

131. Steppan, J., Wang, H., Bergman, Y., Rauer, M. J., Tan, S., Jandu, S., Nandakumar, K., Barreto-Ortiz, S., Cole, R. N., Boronina, T. N., Zhu, W., Halushka, M. K., An, S. S., Berkowitz, D. E., and Santhanam, L. (2019) Lysyl oxidase-like 2 depletion is protective in age-associated vascular stiffening, Am. J. Physiol. Heart Circ. Physiol., 317, H49-H59, doi: 10.1152/ajpheart.00670.2018.

132. Nascimento, R. A., Possomato-Vieira, J. S., Bonacio, G. F., Rizzi, E., and Dias-Junior, C. A. (2019) Reductions of circulating nitric oxide are followed by hypertension during pregnancy and increased activity of matrix metalloproteinases-2 and -9 in rats, Cells, 8, 1402, doi: 10.3390/cells8111402.

133. Radosinska, J., Barancik, M., and Vrbjar, N. (2017) Heart failure and role of circulating MMP-2 and MMP-9, Panminerva Med., 59, 241-253, doi: 10.23736/S0031-0808.17.03321-3.

134. Yabluchanskiy, A., Ma, Y., Chiao, Y. A., Lopez, E. F., Voorhees, A. P., Toba, H., Hall, M. E., Han, H. C., Lindsey, M. L., and Jin, Y. F. (2014) Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction, Am. J. Physiol. Heart Circ. Physiol., 306, H1398-1407, doi: 10.1152/ajpheart.00090.2014.

135. Meschiari, C. A., Ero, O. K., Pan, H., Finkel, T., and Lindsey, M. L. (2017) The impact of aging on cardiac extracellular matrix, Geroscience, 39, 7-18, doi: 10.1007/s11357-017-9959-9.

136. Spiecker, M. (2006) Heart failure in elderly patients, Exp. Gerontol., 41, 549-551, doi: 10.1016/j.exger.2006.03.002.

137. Diez-Villanueva, P., and Alfonso, F. (2016) Heart failure in the elderly, J. Geriatr. Cardiol., 13, 115-117, doi: 10.11909/j.issn.1671-5411.2016.02.009.

138. Mendes, A. B. L., Ferro, M., Rodrigues, B., Souza, M. R., Araujo, R. C., and Souza, R. R. (2012) Quantification of left ventricular myocardial collagen system in children, young adults, and the elderly, Medicina (B Aires), 72, 216-220.

139. Horn, M. A., and Trafford, A. W. (2016) Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling, J. Mol. Cell Cardiol., 93, 175-185, doi: 10.1016/j.yjmcc.2015.11.005.

140. De Castro Bras, L. E., Toba, H., Baicu, C. F., Zile, M. R., Weintraub, S. T., Lindsey, M. L., and Bradshaw, A. D. (2014) Age and SPARC change the extracellular matrix composition of the left ventricle, Biomed. Res. Int., 2014, 810562, doi: 10.1155/2014/810562.

141. Hardy, S. A., Mabotuwana, N. S., Murtha, L. A., Coulter, B., Sanchez-Bezanilla, S., Al-Omary, M. S., Senanayake, T., Loering, S., Starkey, M., Lee, R. J., Rainer, P. P., Hansbro, P. M., and Boyle, A. J. (2019) Novel role of extracellular matrix protein 1 (ECM1) in cardiac aging and myocardial infarction, PLoS One, 14, e0212230, doi: 10.1371/journal.pone.0212230.

142. Li, S. Y., Du, M., Dolence, E. K., Fang, C. X., Mayer, G. E., Ceylan-Isik, A. F., LaCour, K. H., Yang, X., Wilbert, C. J., Sreejayan, N., and Ren, J. (2005) Aging induces cardiac diastolic dysfunction, oxidative stress, accumulation of advanced glycation endproducts and protein modification, Aging Cell, 4, 57-64, doi: 10.1111/j.1474-9728.2005.00146.x.

143. Campbell, D. J., Somaratne, J. B., Jenkins, A. J., Prior, D. L., Yii, M., Kenny, J. F., Newcomb, A. E., Schalkwijk, C. G., Black, M. J., and Kelly, D. J. (2012) Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels, PLoS One, 7, e49813, doi: 10.1371/journal.pone.0049813.