БИОХИМИЯ, 2022, том 87, вып. 12, с. 1818–1841
УДК 577.24
Является ли старение человека формой феноптоза?
Обзор
1 Italian Society for Evolutionary Biology (SIBE), 14100 Asti, Italy
2 Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy
3 Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
4 Italian Society of Gerontology and Geriatrics (SIGG), 50129 Firenze, Italy
5 Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
6 Istituti Clinici Scientifici Maugeri SPA – Società Benefit, IRCCS, 82037 Telese Terme (BN), Italy
Поступила в редакцию 02.08.2022
После доработки 28.08.2022
Принята к публикации 29.08.2022
DOI: 10.31857/S0320972522120041
КЛЮЧЕВЫЕ СЛОВА: феноптоз, старение, субтеломеры, теломеры, субтеломерно-теломерная теория, постепенное клеточное старение, клеточное старение, эпигенетические изменения.
Аннотация
Суть этой активно обсуждаемой научной проблемы заключается в том, является ли старение следствием накопления дегенеративных факторов, недостаточно противостоящих естественному отбору, или же, напротив, оно является упорядоченным процессом, генетически предопределённым и регулируемым, моделируемым естественным отбором, для которого было вполне уместно использовать определение феноптотического явления. В настоящем обзоре приведены теоретические аргументы и эмпирические данные в пользу обеих гипотез с дополнительными доказательствами в поддержку тезиса о старении как форме феноптоза. Поскольку тезис о старении как адаптивном запрограммированном явлении должен быть подкреплён существованием специфических механизмов, определяющих старение, таких как предложенная для этой цели субтеломерно-теломерная теория, приводятся доказательства, подтверждающие механизмы, описываемые этой теорией. В частности, в статье подчёркивается, что недавно появившаяся интерпретация роли последовательностей TERRA в рамках субтеломерно-теломерной теории является ключевым моментом в поддержку гипотетических механизмов. Кроме того, отдельные характеристики механизмов, предложенных в рамках данной теории, такие как наблюдаемые при старении эпигенетические модификации, постепенное старение клеток, клеточное старение, ограничения дупликации клеток и фиксированный размер теломерного гетерохроматинового капюшона, подробно рассмотрены на предмет их совместимости как с положением о старении как феноптотическом явлении, так и с противоположными точками зрения. Короче говоря, старение как форма феноптоза представляется научно обоснованной гипотезой, в то время как противоположный тезис должен прояснить значение различных явлений, которые, по-видимому, опровергают его.
Текст статьи
Сноски
* Адресат для корреспонденции.
Вклад авторов
Первый автор взял на себя инициативу в написании рукописи. Все авторы обсудили результаты, предоставили критические отзывы и внесли свой вклад в окончательный вариант рукописи.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в финансовой или любой другой сфере.
Соблюдение этических норм
Эта статья не содержит каких-либо исследований с участием людей или животных, проведённых кем-либо из авторов.
Список литературы
1. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry (Moscow), 62, 1191-1195.
2. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.
3. Libertini, G. (1988) An adaptive theory of the increasing mortality with increasing chronological age in populations in the wild, J. Theor. Biol., 132, 145-162, doi: 10.1016/s0022-5193(88)80153-x.
4. Skulachev, V. P. (2002) Programmed death phenomena: from organelle to organism, Ann. N. Y. Acad. Sci., 959, 214-237, doi: 10.1111/j.1749-6632.2002.tb02095.x.
5. Libertini, G. (2012) Classification of phenoptotic phenomena, Biochemistry (Moscow), 77, 707-715, doi: 10.1134/S0006297912070024.
6. Libertini, G., Corbi, G., Conti, V., Shubernetskaya, O., and Ferrara, N. (2021) Evolutionary Gerontology and Geriatrics – Why and How We Age, in Advances in Studies of Aging and Health, 2, Switzerland, Springer, doi: 10.1007/978-3-030-73774-0.
7. Finch, C. E. (1990) Longevity, Senescence, and the Genome, University of Chicago Press, Chicago.
8. Darwin, C. R. (1869) Origin of Species, 5th Edn., John Murray, London.
9. Darwin, C. R. (1871) The Descent of Man, and Selection in Relation to Sex, John Murray, London.
10. Kirkwood, T. B. (2005) Understanding the odd science of aging, Cell, 120, P437-P447, doi: 10.1016/j.cell.2005.01.027.
11. Hayflick, L. (2000) The future of ageing, Nature, 408, 267-269, doi: 10.1038/35041709.
12. Vaupel, J. W., Baudisch, A., Dölling, M., Roach, D. A., and Gampe, J. (2004) The case for negative senescence, Theor. Popul. Biol., 65, 339-351, doi: 10.1016/j.tpb.2003.12.003.
13. Kirkwood, T. B., and Austad, S. N. (2000) Why do we age? Nature, 408, 233-238, doi: 10.1038/35041682.
14. Ricklefs, R. E. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span, Am. Nat., 152, 24-44, doi: 10.1086/286147.
15. Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M., and Austad, S. N. (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology, Ageing Res. Rev., 12, 214-225, doi: 10.1016/j.arr.2012.07.004.
16. Williams, G. C. (1957) Pleiotropy, natural selection and the evolution of senescence, Evolution, 11, 398-411, doi: 10.2307/2406060.
17. Kirkwood, T. B., and Melov, S. (2011) On the programmed/non-programmed nature of ageing within the life history, Curr. Biol., 21, R701-R707, doi: 10.1016/j.cub.2011.07.020.
18. Hamilton, W. D. (1964) The genetical evolution of social behaviour. II, J. Theor. Biol., 7, 1-52, doi: 10.1016/0022-5193(64)90039-6.
19. Trivers, R. L. (1971) The evolution of reciprocal altruism, Quart. Rev. Biol., 46, 35-57, doi: 10.1086/406755.
20. Medawar, P. B. (1952) An Unsolved Problem in Biology, H. K. Lewis, London. Reprinted in The Uniqueness of the Individual (Medawar, P. B., 1957) Methuen, London.
21. Mueller, L. D. (1987) Evolution of accelerated senescence in laboratory populations of Drosophila, Proc. Natl. Acad. Sci. USA, 84, 1974-1977, doi: 10.1073/pnas.84.7.1974.
22. Libertini, G., Rengo, G., and Ferrara, N. (2017) Aging and aging theories, J. Geront. Geriatr., 65, 59-77.
23. Cagan, A., Baez-Ortega, A., Brzozowska, N., Abascal, F., Coorens, T. H. H., et al. (2022) Somatic mutation rates scale with lifespan across mammals, Nature, 604, 517-524, doi: 10.1038/s41586-022-04618-z.
24. Gorelick, A. N., and Naxerova, K. (2022) Mutational clocks tick differently across species, Nature, 604, 435-436, doi: 10.1038/d41586-022-00976-w.
25. Robinson, P. S., Coorens, T. H. H., Palles, C., Mitchell, E., Abascal, F., et al. (2021) Increased somatic mutation burdens in normal human cells due to defective DNA polymerases, Nat. Genet., 53, 1434-1442, doi: 10.1038/s41588-021-00930-y.
26. Rose, M. R. (1991) Evolutionary Biology of Aging, Oxford University Press, Oxford (UK).
27. Kirkwood, T. B. (1977) Evolution of ageing, Nature, 270, 301-304, doi: 10.1038/270301a0.
28. Kirkwood, T. B., and Holliday, R. (1979) The evolution of ageing and longevity, Proc. R. Soc. Lond. B Biol. Sci., 205, 531-546, doi: 10.1098/rspb.1979.0083.
29. Comfort, A. (1979) The Biology of Senescence, Livingstone, London.
30. Fülöp, T., Witkowski, J. M., Pawelec, G., Alan, C., and Larbi, A. (2014) On the immunological theory of aging, Interdiscip. Top. Gerontol., 39, 163-176, doi: 10.1159/000358904.
31. Franceschi, C., Garagnani, P., Morsiani, C., Conte, M., Santoro, A., et al. (2018) The continuum of aging and age-related diseases: common mechanisms but different rates, Front. Med. (Lausanne), 5, 61, doi: 10.3389/fmed.2018.00061.
32. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663-676, doi: 10.1016/j.cell.2006.07.024.
33. Cowan, C. A., Atienza, J., Melton, D. A., and Eggan, K. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells, Science, 309, 1369-1373, doi: 10.1126/science.1116447.
34. Fossel, M. B. (2004) Cells, Aging and Human Disease, Oxford University Press, New York.
35. Travis, J. M. (2004) The evolution of programmed death in a spatially structured population, J. Gerontol. A Biol. Sci. Med. Sci., 59, 301-305, doi: 10.1093/gerona/59.4.b301.
36. Martins, A. C. (2011) Change and aging senescence as an adaptation, PLoS One, 6, e24328, doi: 10.1371/journal.pone.0024328.
37. Mitteldorf, J., and Martins, A. C. (2014) Programmed life span in the context of evolvability, Am. Nat., 184, 289-302, doi: 10.1086/677387.
38. Libertini, G. (2006) Evolutionary explanations of the “actuarial senescence in the wild” and of the “state of senility”, ScientificWorldJournal, 6, 1086-1108, doi: 10.1100/tsw.2006.209.
39. Libertini, G. (2008) Empirical evidence for various evolutionary hypotheses on species demonstrating increasing mortality with increasing chronological age in the wild, ScientificWorldJournal, 8, 182-193, doi: 10.1100/tsw.2008.36.
40. Libertini, G., Corbi, G., and Ferrara, N. (2020) Importance and meaning of TERRA sequences for aging mechanisms, Biochemistry (Moscow), 85, 1505-1517, doi: 10.1134/S0006297920120044.
41. Libertini, G., Shubernetskaya, O., Corbi, G., and Ferrara, N. (2021) Is evidence supporting the subtelomere-telomere theory of aging? Biochemistry (Moscow), 86, 1766-1781, doi: 10.1134/S0006297921120026.
42. Hayflick, L., and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585-621, doi: 10.1016/0014-4827(61)90192-6.
43. Olovnikov, A. M. (1971) Principle of marginotomy in template synthesis of polynucleotides, Doklady Biochem., 201, 394-397.
44. Olovnikov, A. M. (1973) A theory of marginotomy: the incomplete copying of template margin in enzyme synthesis of polynucleotides and biological significance of the problem, J. Theor. Biol., 41, 181-190, doi: 10.1016/0022-5193(73)90198-7.
45. Greider, C. W., and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts, Cell, 43 (2 Pt 1), 405-413, doi: 10.1016/0092-8674(85)90170-9.
46. Gorbunova, V., Bozzella, M. J., and Seluanov, A. (2008) Rodents for comparative aging studies: from mice to beavers, Age (Dordr.), 30, 111-119, doi: 10.1007/s11357-008-9053-4.
47. Slijepcevic, P., and Hande, M. P. (1999) Chinese hamster telomeres are comparable in size to mouse telomeres, Cytogenet. Cell Genet., 85, 196-199, doi: 10.1159/000015292.
48. Kubota, C., Yamakuchi, H., Todoroki, J., Mizoshita, K., Tabara, N., et al. (2000) Six cloned calves produced from adult fibroblast cells after long-term culture, Proc. Natl. Acad. Sci. USA, 97, 990-995, doi: 10.1073/pnas.97.3.990.
49. Lanza, R. P., Cibelli, J. B., Faber, D., Sweeney, R. W., Henderson, B., et al. (2001) Cloned cattle can be healthy and normal, Science, 294, 1893-1894, doi: 10.1126/science.1063440.
50. Blackburn, E. H. (2000) Telomere states and cell fates, Nature, 408, 53-56, doi: 10.1038/35040500.
51. Libertini, G., and Ferrara, N. (2016) Possible interventions to modify aging, Biochemistry (Moscow), 81, 1413-1428, doi: 10.1134/S0006297916120038.
52. Libertini, G., Ferrara, N., Rengo, G., and Corbi, G. (2018) Elimination of senescent cells: prospects according to the subtelomere-telomere theory, Biochemistry (Moscow), 83, 1477-1488, doi: 10.1134/S0006297918120064.
53. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription, Cell, 63, 751-762, doi: 10.1016/0092-8674(90)90141-z.
54. Sinclair, D. A., and Guarente, L. (1997) Extrachromosomal rDNA circles – a cause of aging in yeast, Cell, 91, 1033-1042, doi: 10.1016/s0092-8674(00)80493-6.
55. Lesur, I., and Campbell, J. L. (2004) The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells, Mol. Biol. Cell, 15, 1297-1312, doi: 10.1091/mbc.e03-10-0742.
56. Ben-Porath, I., and Weinberg, R. (2005) The signals and pathways activating cellular senescence, Int. J. Biochem. Cell Biol., 37, 961-976, doi: 10.1016/j.biocel.2004.10.013.
57. Campisi, J., and d’Adda di Fagagna, F. (2007) Cellular senescence: when bad things happen to good cells, Nat. Rev. Mol. Cell. Biol., 8, 729-740, doi: 10.1038/nrm2233.
58. Coppé, J. -P., Patil, C. K., Rodier, F., Sun, Y., Muñoz, D. P., et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol., 6, 2853-2868, doi: 10.1371/journal.pbio.0060301.
59. Londoño-Vallejo, J. A., DerSarkissian, H., Cazes, L., and Thomas, G. (2001) Differences in telomere length between homologous chromosomes in humans, Nucleic Acids Res., 29, 3164-3171, doi: 10.1093/nar/29.15.3164.
60. Hjelmborg, J. B., Dalgård, C., Möller, S., Steenstrup, T., Kimura, M., et al. (2015) The heritability of leucocyte telomere length dynamics, J. Med. Genet., 52, 297-302, doi: 10.1136/jmedgenet-2014-102736.
61. Brown, W. R., MacKinnon, P. J., Villasanté, A., Spurr, N., Buckle, V. J., et al. (1990) Structure and polymorphism of human telomere-associated DNA, Cell, 63, 119-132, doi: 10.1016/0092-8674(90)90293-n.
62. Nergadze, S. G., Farnung, B. O., Wischnewski, H., Khoriauli, L., Vitelli, V., et al. (2009) CpG-island promoters drive transcription of human telomeres, RNA, 15, 2186-2194, doi: 10.1261/rna.1748309.
63. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends, Science, 318, 798-801, doi: 10.1126/science.1147182.
64. Schoeftner, S., and Blasco, M. A. (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II, Nat. Cell Biol., 10, 228-236, doi: 10.1038/ncb1685.
65. Feuerhahn, S., Iglesias, N., Panza, A., Porro, A., and Lingner, J. (2010) TERRA biogenesis, turnover and implications for function, FEBS Lett., 584, 3812-3818, doi: 10.1016/j.febslet.2010.07.032.
66. Porro, A., Feuerhahn, S., Delafontaine, J., Riethman, H., Rougemont, J., et al. (2014) Functional characterization of the TERRA transcriptome at damaged telomeres, Nat. Commun., 5, 5379, doi: 10.1038/ncomms6379.
67. Diman, A., Boros, J., Poulain, F., Rodriguez, J., Purnelle, M., et al. (2016) Nuclear respiratory factor 1 and endurance exercise promote human telomere transcription, Sci. Adv., 2, e1600031, doi: 10.1126/sciadv.1600031.
68. Diman, A., and Decottignies, A. (2018) Genomic origin and nuclear localization of TERRA telomeric repeat-containing RNA: from Darkness to Dawn, FEBS J., 285, 1389-1398, doi: 10.1111/febs.14363.
69. Azzalin, C. M., and Lingner, J. (2008) Telomeres: the silence is broken, Cell Cycle, 7, 1161-1165, doi: 10.4161/cc.7.9.5836.
70. Chu, H. -P., Cifuentes-Rojas, C., Kesner, B., Aeby, E., Lee, H.-G., et al. (2017) TERRA RNA antagonizes ATRX and protects telomeres, Cell, 170, 86-101, doi: 10.1016/j.cell.2017.06.017.
71. Chu, H. -P., Froberg, J. E., Kesner, B., Oh, H. J., Ji, F., et al. (2017) PAR-TERRA directs homologous sex chromosome pairing, Nat. Struct. Mol. Biol., 24, 620-631, doi: 10.1038/nsmb.3432.
72. Bettin, N., Oss Pegorar, C., and Cusanelli, E. (2019) The emerging roles of TERRA in telomere maintenance and genome stability, Cells, 8, 246, doi: 10.3390/cells8030246.
73. Montero, J. J., Lopez de Silanes, I., Grana, O., and Blasco, M. A. (2016) Telomeric RNAs are essential to maintain telomeres, Nat. Commun., 7, 12534, doi: 10.1038/ncomms12534.
74. Illingworth, R., Kerr, A., Desousa, D., Jørgensen, H., Ellis, P., et al. (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci, PLoS Biol., 6, e22, doi: 10.1371/journal.pbio.0060022.
75. Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., et al. (2010) The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol., 28, 1045-1048, doi: 10.1038/nbt1010-1045.
76. Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol., 14, R115, doi: 10.1101/2021.01.18.426733.
78. Rakyan, V. K., Down, T. A., Maslau, S., Andrew, T., Yang, T. P., et al. (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains, Genome Res., 20, 434-439, doi: 10.1101/gr.103101.109.
79. Teschendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Weisenberger, D. J., et al. (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer, Genome Res., 20, 440-446, doi: 10.1101/gr.103606.109.
80. Horvath, S., Zhang, Y., Langfelder, P., Kahn, R., Boks, M., et al. (2012) Aging effects on DNA methylation modules in human brain and blood tissue, Genome Biol., 13, R97, doi: 10.1186/gb-2012-13-10-r97.
81. Bell, J. T., Tsai, P. C., Yang, T. P., Pidsley, R., Nisbet, J., et al. (2012) Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population, PLoS Genet., 8, e1002629, doi: 10.1371/journal.gen.1002629.
82. Bird, A. (2002) DNA methylation patterns and epigenetic memory, Genes Dev., 16, 6-21, doi: 10.1101/gad.947102.
83. Stein, R., Razin, A., and Cedar, H. (1982) In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells, Proc. Natl. Acad. Sci. USA, 79, 3418-3422, doi: 10.1073/pnas.79.11.3418.
84. Hansen, R. S., and Gartler, S. M. (1990) 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island, Proc. Natl. Acad. Sci. USA, 87, 4174-4178, doi: 10.1073/pnas.87.11.4174.
85. Bollati, V., Schwartz, J., Wright, R., Litonjua, A., Tarantini, L., et al. (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects, Mech. Ageing Dev., 130, 234-239, doi: 10.1016/j.mad.2008.12.003.
86. Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., et al. (2009) Aging and environmental exposures alter tissue specific DNA methylation dependent upon CpG island context, PLoS Genet., 5, e1000602, doi: 10.1371/journal.pgen.1000602.
87. Pal, S., and Tyler, J. K. (2016) Epigenetics and aging, Sci. Adv., 2, e1600584, doi: 10.1126/sciadv.1600584.
88. Greer, E. L., and Shi, Y. (2012) Histone methylation: a dynamic mark in health, disease and inheritance, Nat. Rev. Genet., 13, 343-357, doi: 10.1038/nrg31730.
89. Booth, L. N., and Brunet, A. (2016) The aging epigenome, Mol. Cell, 62, 728-744, doi: 10.1016/j.molcel.2016.05.013.
90. Benetti, R., García-Cao, M., and Blasco, M. A. (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres, Nat. Genet., 39, 243-250, doi: 10.1038/ng1952.
91. Blasco, M. A. (2007) The epigenetic regulation of mammalian telomeres, Nat. Rev. Genet., 8, 299-309, doi: 10.1038/nrg2047.
92. Maeda, T., Guan, J. Z., Higuchi, Y., Oyama, J., and Makino, N. (2009) Aging-related alterations of subtelomeric methylation in sarcoidosis patients, J. Gerontol. A Biol. Sci. Med. Sci., 64, 752-760, doi: 10.1093/gerona/glp049.
93. Buxton, J. L., Suderman, M., Pappas, J. J., Borghol, N., McArdle, W., et al. (2014) Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci, Sci. Rep., 4, 4954, doi: 10.1038/srep04954.
94. Schellenberg, A., Lin, Q., Schüler, H., Koch, C. M., Joussen, S., et al. (2011) Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks, Aging (Albany NY), 3, 873-888, doi: 10.18632/aging.100391.
95. Zhou, X., Hong, Y., Zhang, H., and Li, X. (2020) Mesenchymal stem cell senescence and rejuvenation: current status and challenges, Front. Cell Dev. Biol., 8, 364, doi: 10.3389/fcell.2020.00364.
96. Ohno, S. (1972) So much “junk” DNA in our genome, in Evolution of Genetic Systems (Smith, H. H., ed.) Gordon and Breach, New York, pp. 366-370.
97. Moraes, F., and Góes, A. (2016) A decade of human genome project conclusion: Scientific diffusion about our genome knowledge, Biochem. Mol. Biol. Educ., 44, 215-223, doi: 10.1002/bmb.20952.
98. D’Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., et al. (2003) A DNA damage checkpoint response in telomere-initiated senescence, Nature, 426, 194-198, doi: 10.1038/nature02118.
99. Cristofalo, V. J., and Pignolo, R. J. (1993) Replicative senescence of human fibroblast-like cells in culture, Physiol. Rev., 73, 617-638, doi: 10.1152/physrev.1993.73.3.617.
100. Kwon, S. M., Hong, S. M., Lee, Y. K., Min, S., and Yoon, G. (2019) Metabolic features and regulation in cell senescence, BMB Rep., 52, 5-12, doi: 10.5483/BMBRep.2019.52.1.291.
101. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D., and Funk, W. D. (1999) Microarray analysis of replicative senescence, Curr. Biol., 9, 939-945, doi: 10.1016/s0960-9822(99)80420-5.
102. Kirkland, J. L., and Tchkonia, T. (2017) Cellular senescence: a translational perspective, EBioMedicine, 21, 21-28, doi: 10.1016/j.ebiom.2017.04.013.
103. Van Deursen, J. M. (2014) The role of senescent cells in ageing, Nature, 509, 439-446, doi: 10.1038/nature13193.
104. Rodier, F., Coppé, J. P., Patil, C. K., Hoeijmakers, W. A., Muñoz, D. P., et al. (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion, Nat. Cell. Biol., 11, 973-979; doi: 10.1038/ncb1909.
105. Wang, E. (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved, Cancer Res., 55, 2284-2292.
106. Krishnamurthy, J., Torrice, C., Ramsey, M. R., Kovalev, G. I., Al-Regaiey, K., et al. (2004) Ink4a/Arf expression is a biomarker of aging, J. Clin. Invest., 114, 1299-1307, doi: 10.1172/JCI22475.
107. Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., et al. (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, 530, 184-189, doi: 10.1038/nature16932.
108. Baker, D. J., Jeganathan, K. B., Cameron, J. D., Thompson, M., Juneja, S., et al. (2004) BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice, Nat. Genet., 36, 744-749, doi: 10.1038/ng1382.
109. Baker, D. J., Perez-Terzic, C., Jin, F., Pitel, K. S., Niederländer, N. J., et al. (2008) Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency, Nat. Cell. Biol., 10, 825-836, doi: 10.1038/ncb1744.
110. Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., et al. (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat. Med., 22, 78-83, doi: 10.1038/nm.4010.
111. Fuhrmann-Stroissnigg, H., Ling, Y. Y., Zhao, J., McGowan, S. J., Zhu, Y., et al. (2017) Identification of HSP90 inhibitors as a novel class of senolytics, Nat. Commun., 8, 422, doi: 10.1038/s41467-017-00314-z.
112. Campisi, J. (2003) Cancer and ageing: rival demons? Nat. Rev. Cancer, 3, 339-349, doi: 10.1038/nrc1073.
113. Wright, W. E., and Shay, J. W. (2005) Telomere biology in aging and cancer, J. Am. Geriatr. Soc., 53, S292-S294, doi: 10.1111/j.1532-5415.2005.53492.x.
114. Campisi, J (2000) Cancer, aging and cellular senescence, In vivo, 14, 183-188.
115. Wu, X., Amos, C. I., Zhu, Y., Zhao, H., Grossman, B. H., et al. (2003) Telomere dysfunction: a potential cancer predisposition factor, J. Natl. Cancer Inst., 95, 1211-128, doi: 10.1093/jnci/djg011.
116. Ma, H., Zhou, Z., Wei, S., Liu, Z., Pooley, K. A., et al. (2011) Shortened telomere length is associated with increased risk of cancer: a meta-analysis, PLoS One, 6, e20466, doi: 10.1371/journal.pone.0020466.
117. Bernardes de Jesus, B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., et al. (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer, EMBO Mol. Med., 4, 691-704, doi: 10.1002/emmm.201200245.
118. Laun, P., Bruschi, C. V., Dickinson, J. R., Rinnerthaler, M., Heeren, G., et al. (2007) Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing, Nucleic Acids Res., 35, 7514-7526, doi: 10.1093/nar/gkm919.
119. Libertini, G. (2013) Evidence for aging theories from the study of a hunter-gatherer people (Ache of Paraguay), Biochemistry (Moscow), 78, 1023-1032, doi: 10.1134/S0006297913090083.
120. Mitteldorf, J. (2013) Telomere biology: cancer firewall or aging clock? Biochemistry (Moscow), 78, 1054-1060, doi: 10.1134/S0006297913090125.
121. Libertini, G. (2015) Non-programmed versus programmed aging paradigm. Curr Aging Sci, 8, 56-68, doi: 10.2174/1874609808666150422111623.
122. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., et al. (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process, PLoS One, 3, e2213, doi: 10.1371/journal.pone.0002213.
123. Koch, C. M. (2012) Monitoring of cellular senescence by DNA-methylation at specific CpG sites, Aging Cell, 11, 366-369, doi: 10.1111/j.1474-9726.2011.00784.x.
124. Schellenberg, A. (2014) Proof of principle: quality control of therapeutic cell preparations using senescence-associated DNA-methylation changes, BMC Res. Notes, 7, 254, doi: 10.1186/1756-0500-7-254.
125. Fernandez-Rebollo, E. (2020) Senescence-associated metabolomic phenotype in primary and iPSC-derived mesenchymal stromal cells. Stem Cell Rep., 14, 201-209, doi: 10.1016/j.stemcr.2019.12.012.
126. Robin, J. D., Ludlow, A. T., Batten, K., Magdinier, F., Stadler, G., et al. (2014) Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances, Genes Dev., 28, 2464-2476, doi: 10.1101/gad.251041.114.
127. Laun, P., Pichova, A., Madeo, F., Fuchs, J., Ellinger, A., et al. (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis, Mol. Microbiol., 39, 1166-1173, doi: 10.1111/j.1365-2958.2001.02317.x.
128. Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Fröhlich, K. U., et al. (2004) Chronological aging leads to apoptosis in yeast, J. Cell Biol., 164, 501-507, doi: 10.1083/jcb.200310014.
129. D’Mello, N. P., and Jazwinski, S. M. (1991) Telomere length constancy during aging of Saccharomyces cerevisiae, J. Bacteriol., 173, 6709-6713, doi: 10.1128/jb.173.21.6709-6713.1991.
130. Spitzhorn, L. S. (2019) Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature, Stem Cell Res. Ther., 10, 100, doi: 10.1186/s13287-019-1209-x.
131. Hynes, K. (2013) Mesenchymal stem cells from iPS cells facilitate periodontal regeneration, J. Dent. Res., 92, 833-839, doi: 10.1177/0022034513498258.
132. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., et al. (2014) Essential Cell Biology, 4th Edn., Garland Science, New York.
133. Anversa, P., Kajstura, J., Leri, A., and Bolli, R. (2006) Life and death of cardiac stem cells: a paradigm shift in cardiac biology, Circulation, 113, 1451-1463, doi: 10.1161/CIRCULATIONAHA.105.595181.
134. Libertini, G., and Ferrara, N. (2016) Aging of perennial cells and organ parts according to the programmed aging paradigm, Age (Dordr.), 38, 35, doi: 10.1007/s11357-016-9895-0.
135. Takubo, K., Aida, J., Izumiyama-Shimomura, N., Ishikawa, N., Sawabe, M., et al. (2010) Changes of telomere length with aging, Geriatr. Gerontol. Int., 10, S197-S206, doi: 10.1111/j.1447-0594.2010.00605.x.
136. Daniali, L., Benetos, A., Susser, E., Kark, J. D., Labat, C., et al. (2013) Telomeres shorten at equivalent rates in somatic tissues of adults, Nat. Commun., 4, 1597, doi: 10.1038/ncomms2602.
137. Okuda, K., Bardeguez, A., Gardner, J. P., Rodriguez, P., Ganesh, V., et al. (2002) Telomere length in the newborn, Pediatr. Res., 52, 377-381, doi: 10.1203/00006450-200209000-00012.
138. Libertini, G. (2009) The role of telomere-telomerase system in age-related fitness decline, a tameable process, in Telomeres: Function, Shortening and Lengthening (Mancini, L., ed.) Nova Science Publ., New York, pp. 77-132.
139. Flanary, B. (2009) Telomeres: Function, Shortening, and Lengthening, in Telomeres: Function, Shortening and Lengthening (Mancini, L., ed.) Nova Science Publ. Inc., New York, pp. 379-386.
140. Libertini, G. (2014) Programmed aging paradigm: how we get old, Biochemistry (Moscow), 79, 1004-1016, doi: 10.1134/S0006297914100034.
141. Takai, K. K., Hooper, S., Blackwood, S., Gandhi, R., and de Lange, T. (2010) In vivo stoichiometry of shelterin components, J. Biol. Chem., 285, 1457-1467, doi: 10.1074/jbc.M109.038026.