БИОХИМИЯ, 2022, том 87, вып. 12, с. 1777–1817

УДК 577.24

Старение – неизбежное свойство живой материи или эволюционная адаптация?

Обзор

© 2022 П.В. Лидский 1peter.lidsky@ucsf.edu, Ц. Юань 1, Ж.М. Рулисон 1,2, Р. Андино-Павловский 1*raul.andino@ucsf.edu

Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA

University of California Berkeley, Berkeley, CA, USA

Поступила в редакцию 27.09.2022
После доработки 27.09.2022
Принята к публикации 04.11.2022

DOI: 10.31857/S032097252212003X

КЛЮЧЕВЫЕ СЛОВА: старение, эволюция, инфекция, иммунитет, феноптоз.

Аннотация

«О, Гильгамеш! Энлиль, Великая Гора, Отец Богов сделал твоей судьбой царствование, но вечную жизнь… не должно печалить тебя, не должно вводить в отчаяние, не должно вводить в уныние. Тебе, должно быть, говорили, что именно в этом заключается проклятие человеческого бытия. Тебе, должно быть, говорили, что это связано с перерезанием пуповины. Самый темный день ожидает тебя».

«Смерть Гильгамеша», вариант Нибру, сегмент E

Старение – эволюционный парадокс. Для его объяснения было предложено несколько гипотез, но ни одна из них полностью не объясняет биохимические и экологические данные, накопленные за десятилетия исследований. Мы предполагаем, что старение является примитивной иммунной стратегией, которая защищает родственные организмы от хронических инфекций. Более старые организмы экспонированы к потенциальным патогенам в течение более длительного периода времени и имеют более высокую вероятность заражения инфекционными заболеваниями. Соответственно, паразитарная нагрузка у пожилых особей выше, чем у молодых. Если принять, что вероятность передачи инфекций между родственниками выше, затраты на приспособление к хроническому патогену могут превышать пользу от более продолжительной жизни. В этом случае запрограммированное прерывание жизни может быть эволюционно стабильной стратегией. В этой статье мы обсуждаем классические эволюционные гипотезы старения и сравниваем их с гипотезой контроля инфекций, обсуждаем согласованность этих гипотез с существующими эмпирическими данными и представляем пересмотренную концептуальную основу для понимания эволюции старения.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа была поддержана грантами NIH R01AI137471 и грантом программы стимулирования долголетия, предоставленного РА.

Вклад авторов

ПВЛ – исходная концепция работы; ПВЛ, ЦЮ, ЖР, РА – обсуждение и доработка; ЦЮ – сбор данных для таблицы S1 Приложения; ПВЛ, ЖР, РА – написание манускрипта; РА – финансирование работы.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Данная статья не содержит описания исследований с участием человека или лабораторных животных.

Дополнительные материалы

Приложение к статье на английском языке опубликовано на сайте издательства Springer (www.springer.com/journal/10541), том 87, вып. 12, 2022.

Список литературы

1. Weismann, A. (1891) Essays Upon Heredity and Kindred Biological Problems, Clarendon Press, Oxford.

2. Fisher, R. A. (1930) The genetical theory of natural selection, doi: 10.5962/bhl.title.27468.

3. Medawar, P. B. (1952) An Unsolved Problem of Biology: An Inaugural Lecture Delivered at University College, London, 6 December, 1951.

4. Haldane, J. B. S. (1942) New Paths in Genetics, Harper & Brothers, NY & London.

5. Hamilton, W. D. (1966) The moulding of senescence by natural selection, J. Theor. Biol., 12, 12-45, doi: 10.1016/0022-5193(66)90184-6.

6. Williams, G. C. (1957) Pleiotropy, natural selection, and the evolution of senescence, Evolution, 11, 398, doi: 10.2307/2406060.

7. Kirkwood, T. B., and Holliday, R. (1979) The evolution of ageing and longevity, Proc. R. Soc. Lond. B Biol. Sci., 205, 531-546, doi: 10.1098/rspb.1979.0083.

8. Lindstedt, S. L., and Calder, W. A. (1981) Body size, physiological time, and longevity of homeothermic animals, Quart. Rev. Biol., 56, 1-16, doi: 10.1086/412080.

9. Ricklefs, R. E. (2010) Life-history connections to rates of aging in terrestrial vertebrates, Proc. Natl. Acad. Sci. USA, 107, 10314-10319, doi: 10.1073/pnas.1005862107.

10. Orgel, L. E. (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing, Proc. Natl. Acad. Sci. USA, 49, 517-521, doi: 10.1073pnas.49.4.517.

11. Harman, D. (1962) Role of free radicals in mutation, cancer, aging, and the maintenance of life, Radiat. Res., 16, 753-763.

12. Bjorksten, J. (1968) The crosslinkage theory of aging, J. Am. Geriatr. Soc., 16, 408-427, doi: 10.1111/j.1532-5415.1968.tb02821.x.

13. Gavrilov, L. A., and Gavrilova, N. S. (2001) The reliability theory of aging and longevity, J. Theor. Biol., 213, 527-545, doi: 10.1006/jtbi.2001.2430.

14. Curtis, H. J. (1965) The somatic mutation theory of aging, Contribut. Psychobiol. Aging, 69-80, doi: 10.1007/978-3-662-39847-0_6.

15. Gershon, D. (1999) The mitochondrial theory of aging: is the culprit a faulty disposal system rather than indigenous mitochondrial alterations? Exp. Gerontol., 34, 613-619, doi: 10.1016/s0531-5565(99)00010-8.

16. Kowald, A. (1999) The mitochondrial theory of aging: do damaged mitochondria accumulate by delayed degradation? Exp. Gerontol., 34, 605-612, doi: 10.1016/s0531-5565(99)00011-x.

17. Terman, A. (2001) Garbage catastrophe theory of aging: imperfect removal of oxidative damage? Redox Rep., 6, 15-26, doi: 10.1179/135100001101535996.

18. Gladyshev, V. N. (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes, Aging Cell, 15, 594-602, doi: 10.1111/acel.12480.

19. Vijg, J. (2020) Loss of gene coordination as a stochastic cause of ageing, Nat. Metab., 2, 1188-1189, doi: 10.1038/s42255-020-00295-2.

20. Larsson, N.-G. (2010) Somatic mitochondrial DNA mutations in mammalian aging, Annu. Rev. Biochem., 79, 683-706, doi: 10.1146/annurev-biochem-060408-093701.

21. Murray, V. (1990) Are transposons a cause of ageing? Mutat. Res., 237, 59-63, doi: 10.1016/0921-8734(90)90011-f.

22. Nelson, P., and Masel, J. (2017) Intercellular competition and the inevitability of multicellular aging, Proc. Natl. Acad. Sci. USA, 114, 12982-12987, doi: 10.1073/pnas.1618854114.

23. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013) The hallmarks of aging, Cell, 153, 1194-1217, doi: 10.1016/j.cell.2013.05.039.

24. Gems, D., and de Magalhães, J. P. (2021) The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm, Ageing Res. Rev., 70, 101407, doi: 10.1016/j.arr.2021.101407.

25. Cohen, A. A., Ferrucci, L., Fülöp, T., Gravel, D., Hao, N., Kriete, A., Levine, M. E., Lipsitz, L. A., Olde Rikkert, M. G. M., Rutenberg, A., Stroustrup, N., and Varadhan, R. (2022) A complex systems approach to aging biology, Nat. Aging, 2, 580-591, doi: 10.1038/s43587-022-00252-6.

26. Hirsch, H. R. (1987) Why should senescence evolve? An answer based on a simple demographic model, Evol. Longev. Anim., 75-90, doi: 10.1007/978-1-4613-1939-9_5.

27. Travis, J. M. J. (2004) The evolution of programmed death in a spatially structured population, J. Gerontol. Ser. A Biol. Sci. Med. Sci., 59, B301-B305, doi: 10.1093/gerona/59.4.b301.

28. Mitteldorf, J. J. (2012) Demographic evidence for adaptive theories of aging, Biochemistry (Moscow), 77, 726-728, doi: 10.1134/s0006297912070048.

29. Mitteldorf, J. (2017) Aging is a Group-Selected Adaptation: Theory, Evidence, and Medical Implications, CRC Press, doi: 10.1201/9781315371214.

30. Werfel, J., Ingber, D. E., and Bar-Yam, Y. (2015) Programed death is favored by natural selection in spatial systems, Phys. Rev. Lett., 114, 238103, doi: 10.1103/PhysRevLett.114.238103.

31. Goldsmith, T. C. (2008) Aging, evolvability, and the individual benefit requirement; medical implications of aging theory controversies, J. Theor. Biol., 252, 764-768, doi: 10.1016/j.jtbi.2008.02.035.

32. Skulachev, V. P. (1997) Aging is a specific biological function rather than the result of a disorder in complex living systems: biochemical evidence in support of Weismann’s hypothesis, Biochemistry, 62, 1191-1195.

33. Martins, A. C. R. (2011) Change and aging senescence as an adaptation, PLoS One, 6, e24328, doi: 10.1371/journal.pone.0024328.

34. Kirchner, J. W., and Roy, B. A. (1999) The evolutionary advantages of dying young: epidemiological implications of longevity in metapopulations, Am. Nat., 154, 140, doi: 10.2307/2463908.

35. Mitteldorf, J., and Pepper, J. (2009) Senescence as an adaptation to limit the spread of disease, J. Theor. Biol., 260, 186-195, doi: 10.1016/j.jtbi.2009.05.013.

36. Lidsky, P. V., and Andino, R. (2020) Epidemics as an adaptive driving force determining lifespan setpoints, Proc. Natl. Acad. Sci. USA, 117, 17937-17948, doi: 10.1073/pnas.1920988117.

37. Lidsky, P. V., and Andino, R. (2022) Could aging evolve as a pathogen control strategy? Trends Ecol. Evol., doi: 10.1016/j.tree.2022.08.003.

38. Martínez, D. E. (1998) Mortality patterns suggest lack of senescence in hydra, Exp. Gerontol., 33, 217-225, doi: 10.1016/s0531-5565(97)00113-7.

39. Piraino, S., Boero, F., Aeschbach, B., and Schmid, V. (1996) Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa), Biol. Bull., 190, 302-312, doi: 10.2307/1543022.

40. Voituron, Y., de Fraipont, M., Issartel, J., Guillaume, O., and Clobert, J. (2011) Extreme lifespan of the human fish (Proteus anguinus): a challenge for ageing mechanisms, Biol. Lett., 7, 105-107, doi: 10.1098/rsbl.2010.0539.

41. Congdon, J. D., Nagle, R. D., Kinney, O. M., and van Loben Sels, R. C. (2001) Hypotheses of aging in a long-lived vertebrate, Blanding’s turtle (Emydoidea blandingii), Exp. Gerontol., 36, 813-827, doi: 10.1016/s0531-5565(00)00242-4.

42. Miller, J. K. (2001) Escaping senescence: demographic data from the three-toed box turtle (Terrapene carolina triunguis), Exp. Gerontol., 36, 829-832, doi: 10.1016/s0531-5565(00)00243-6.

43. Cailliet, G. M., Andrews, A. H., Burton, E. J., Watters, D. L., Kline, D. E., and Ferry-Graham, L. A. (2001) Age determination and validation studies of marine fishes: do deep-dwellers live longer? Exp. Gerontol., 36, 739-764, doi: 10.1016/s0531-5565(00)00239-4.

44. Buffenstein, R. (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species, J. Comp. Physiol. B, 178, 439-445, doi: 10.1007/s00360-007-0237-5.

45. Idda, M. L., McClusky, W. G., Lodde, V., Munk, R., Abdelmohsen, K., Rossi, M., and Gorospe, M. (2020) Survey of senescent cell markers with age in human tissues, Aging, 12, 4052-4066, doi: 10.18632/aging.102903.

46. Olivetti, G., Melissari, M., Capasso, J. M., and Anversa, P. (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy, Circ. Res., 68, 1560-1568, doi: 10.1161/01.res.68.6.1560.

47. Chien, K. R., and Karsenty, G. (2005) Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone, Cell, 120, 533-544, doi: 10.1016/j.cell.2005.02.006.

48. Peto, R. (2016) Epidemiology, multistage models, and short-term mutagenicity tests, Int. J. Epidemiol., 45, 621-637, doi: 10.1093/ije/dyv199.

49. Tian, X., Azpurua, J., Ke, Z., Augereau, A., Zhang, Z. D., Vijg, J., Gladyshev, V. N., Gorbunova, V., and Seluanov, A. (2015) INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform, Proc. Natl. Acad. Sci. USA, 112, 1053-1058, doi: 10.1073/pnas.1418203112.

50. Seluanov, A., Gladyshev, V. N., Vijg, J., and Gorbunova, V. (2018) Mechanisms of cancer resistance in long-lived mammals, Nat. Rev. Cancer, 18, 433-441, doi: 10.1038/s41568-018-0004-9.

51. Hiatt, H. H., Watson, J. D., and Winsten, J. A. (1977) Origins of Human Cancer, Cold Spring Harbor Laboratory, UK.

52. Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., Diana, E., Lehmann, G., Toren, D., Wang, J., Fraifeld, V. E., and de Magalhães, J. P. (2018) Human Ageing Genomic Resources: new and updated databases, Nucleic Acids Res., 46, D1083-D1090, doi: 10.1093/nar/gkx1042.

53. Holmes, D. J., and Austad, S. N. (1994) Fly now, die later: life-history correlates of gliding and flying in mammals, J. Mammal., 75, 224-226, doi: 10.2307/1382255.

54. Blagosklonny, M. V. (2013) Aging is not programmed, Cell Cycle, 12, 3736-3742, doi: 10.4161/cc.27188.

55. Lee, A. T., and Cerami, A. (1992) Role of glycation in aging, Ann. NY Acad. Sci., 663, 63-70, doi: 10.1111/j.1749-6632.1992.tb38649.x.

56. Blackburn, E. H., Greider, C. W., and Szostak, J. W. (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging, Nat. Med., 12, 1133-1138, doi: 10.1038/nm1006-1133.

57. Gensler, H. L., and Bernstein, H. (1981) DNA Damage as the primary cause of aging, Quart. Rev. Biol., 56, 279-303, doi: 10.1086/412317.

58. Valdesalici, S., and Cellerino, A. (2003) Extremely short lifespan in the annual fish Nothobranchius furzeri, Proc. Biol. Sci., 270 Suppl 2, S189-S191, doi: 10.1098/rsbl.2003.0048.

59. Tatar, M., Gray, D. W., and Carey, J. R. (1997) Altitudinal variation for senescence in Melanoplus grasshoppers, Oecologia, 111, 357-364, doi: 10.1007/s004420050246.

60. Bertrand, H., S. Chan, B. S., and Griffiths, A. J. F. (1985) Insertion of a foreign nucleotide sequence into mitochrondrial DNA causes senescence in neurospora intermedia, Cell, 41, 877-884, doi: 10.1016/s0092-8674(85)80068-4.

61. Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M., and Austad, S. N. (2013) Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology, Ageing Res. Rev., 12, 214-225, doi: 10.1016/j.arr.2012.07.004.

62. Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., Camarda, C. G., Schaible, R., Casper, B. B., Dahlgren, J. P., Ehrlén, J., García, M. B., Menges, E. S., Quintana-Ascencio, P. F., Caswell, H., Baudisch, A., and Vaupel, J. W. (2014) Diversity of ageing across the tree of life, Nature, 505, 169-173, doi: 10.1038/nature12789.

63. Caswell, H., and Shyu, E. (2017) Senescence, Selection Gradients and Mortality, in The Evolution of Senescence in the Tree of Life, Cambridge University Press, pp. 56-82, doi: 10.1017/9781139939867.004.

64. Caswell, H. (2007) Extrinsic mortality and the evolution of senescence, Trends Ecol. Evol., 22, 173-174, doi: 10.1016/j.tree.2007.01.006.

65. Day, T., and Abrams, P. A. (2020) Density dependence, senescence, and Williams’ hypothesis, Trends Ecol. Evol., 35, 300-302, doi: 10.1016/j.tree.2019.11.005.

66. Moorad, J., Promislow, D., and Silvertown, J. (2020) Williams’ intuition about extrinsic mortality is irrelevant, Trends Ecol. Evol., 35, 379, doi: 10.1016/j.tree.2020.02.010.

67. Abrams, P. A. (1993) Does increased mortality favor the evolution of more rapid senescence? Evolution, 47, 877-887, doi: 10.1111/j.1558-5646.1993.tb01241.x.

68. Chen, H.-Y., and Maklakov, A. A. (2012) Longer life span evolves under high rates of condition-dependent mortality, Curr. Biol., 22, 2140-2143, doi: 10.1016/j.cub.2012.09.021.

69. Gaillard, J.-M., and Lemaître, J.-F. (2017) The Williams’ legacy: a critical reappraisal of his nine predictions about the evolution of senescence, Evolution, 71, 2768-2785, doi: 10.1111/evo.13379.

70. Austad, S. N. (1993) Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana), J. Zool., 229, 695-708, doi: 10.1111/j.1469-7998.1993.tb02665.x.

71. Furness, A. I., and Reznick, D. N. (2017) The Evolution of Senescence in Nature, in The Evolution of Senescence in the Tree of Life, Cambridge University Press, pp. 175-197, doi: 10.1017/9781139939867.009.

72. Reznick, D. N., Bryant, M. J., Roff, D., Ghalambor, C. K., and Ghalambor, D. E. (2004) Effect of extrinsic mortality on the evolution of senescence in guppies, Nature, 431, 1095-1099, doi: 10.1038/nature02936.

73. Walsh, M. R., Whittington, D., and Walsh, M. J. (2014) Does variation in the intensity and duration of predation drive evolutionary changes in senescence? J. Anim. Ecol., 83, 1279-1288, doi: 10.1111/1365-2656.12247.

74. Promislow, D. E. L., and Harvey, P. H. (1990) Living fast and dying young: a comparative analysis of life-history variation among mammals, J. Zool., 220, 417-437, doi: 10.1111/j.1469-7998.1990.tb04316.x.

75. Deevey, E. S. (1977) Life tables for natural populations of animals, Math. Demography, pp. 61-74, doi: 10.1007/978-3-642-81046-6_9.

76. Botkin, D. B., and Miller, R. S. (1974) Mortality rates and survival of birds, Am. Nat., 108, 181-192, doi: 10.1086/282898.

77. Siriwardena, G. M., Baillie, S. R., and Wilson, J. D. (1998) Variation in the survival rates of some British passerines with respect to their population trends on farmland, Bird Study, 45, 276-292, doi: 10.1080/00063659809461099.

78. Van Heerdt, P. F., Sluiter, J. W., and Bezem, J. J. (1960) Population statistics of five species of the bat genus myotis and one of the genus rhinolophus, hibernating in the caves of S. Limburg, Arch. Néerlandaises Zool., 13, 511-539, doi: 10.1163/036551660×00170.

79. Gibbons, M. M., and McCarthy, T. K. (1984) Growth, maturation and survival of frogs Rana temporaria L, Ecography, 7, 419-427, doi: 10.1111/j.1600-0587.1984.tb01143.x.

80. Muller, H. J. (1950) Our load of mutations, Am. J. Hum. Genet., 2, 111-176.

81. Austad, S. N., and Hoffman, J. M. (2018) Is antagonistic pleiotropy ubiquitous in aging biology? Evol. Med. Public Health, 2018, 287-294, doi: 10.1093/emph/eoy033.

82. Case, T. J. (1978) On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates, Q. Rev. Biol., 53, 243-282, doi: 10.1086/410622.

83. Kirchner, J. W., and Roy, B. A. (2000) Evolutionary implications of host–pathogen specificity: the fitness consequences of host life history traits, Evol. Ecol., 14, 665-692, doi: 10.1023/a:1011647526731.

84. Enard, D., Cai, L., Gwennap, C., and Petrov, D. A. (2016) Viruses are a dominant driver of protein adaptation in mammals, Elife, 5, doi: 10.7554/eLife.12469.

85. Duggal, N. K., and Emerman, M. (2012) Evolutionary conflicts between viruses and restriction factors shape immunity, Nat. Rev. Immunol., 12, 687-695, doi: 10.1038/nri3295.

86. Daugherty, M. D., and Malik, H. S. (2012) Rules of engagement: molecular insights from host-virus arms races, Annu. Rev. Genet., 46, 677-700, doi: 10.1146/annurev-genet-110711-155522.

87. Bunn, H. F., and Franklin Bunn, H. (1997) Pathogenesis and treatment of sickle cell disease, New Engl. J. Med., 337, 762-769, doi: 10.1056/nejm199709113371107.

88. Williams, T. N., and Thein, S. L. (2018) Sickle cell anemia and its phenotypes, Annu. Rev. Genom. Hum. Genet., 19, 113-147, doi: 10.1146/annurev-genom-083117-021320.

89. Evans, E. A., Chen, W. C., and Tan, M.-W. (2008) The DAF-2 insulin-like signaling pathway independently regulates aging and immunity in C. elegans, Aging Cell, 7, 879-893, doi: 10.1111/j.1474-9726.2008.00435.x.

90. Garsin, D. A., Villanueva, J. M., Begun, J., Kim, D. H., Sifri, C. D., Calderwood, S. B., Ruvkun, G., and Ausubel, F. M. (2003) Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens, Science, 300, 1921, doi: 10.1126/science.1080147.

91. Fabian, D. K., Garschall, K., Klepsatel, P., Santos-Matos, G., Sucena, É., Kapun, M., Lemaitre, B., Schlötterer, C., Arking, R., and Flatt, T. (2018) Evolution of longevity improves immunity in Drosophila, Evol. Lett., 2, 567-579, doi: 10.1002/evl3.89.

92. Donnelly, R., White, A., and Boots, M. (2017) Host lifespan and the evolution of resistance to multiple parasites, J. Evol. Biol., 30, 561-570, doi: 10.1111/jeb.13025.

93. Huang, Z., Whelan, C. V., Dechmann, D., and Teeling, E. C. (2020) Genetic variation between long-lived versus short-lived bats illuminates the molecular signatures of longevity, Aging, 12, 15962-15977, doi: 10.18632/aging.103725.

94. Gorbunova, V., Seluanov, A., Zhang, Z., Gladyshev, V. N., and Vijg, J. (2014) Comparative genetics of longevity and cancer: insights from long-lived rodents, Nat. Rev. Genet., 15, 531-540, doi: 10.1038/nrg3728.

95. Swovick, K., Firsanov, D., Welle, K. A., Hryhorenko, J. R., Wise, J. P., George, C., Sformo, T. L., Seluanov, A., Gorbunova, V., and Ghaemmaghami, S. (2021) Interspecies differences in proteome turnover kinetics are correlated with lifespans and energetic demands, Mol. Cell. Proteomics, 20, 100041, doi: 10.1101/2020.04.25.061150.

96. Carlton, J. M. (2018) Evolution of human malaria, Nat. Microbiol., 3, 642-643, doi: 10.1038/s41564-018-0170-2.

97. Pier, G. B., Grout, M., Zaidi, T., Meluleni, G., Mueschenborn, S. S., Banting, G., Ratcliff, R., Evans, M. J., and Colledge, W. H. (1998) Salmonella typhi uses CFTR to enter intestinal epithelial cells, Nature, 393, 79-82, doi: 10.1038/30006.

98. Cuthbert, A. W., Halstead, J., Ratcliff, R., Colledge, W. H., and Evans, M. J. (1995) The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study, J. Physiol., 482, 449-454, doi: 10.1113/jphysiol.1995.sp020531.

99. Poolman, E. M., and Galvani, A. P. (2007) Evaluating candidate agents of selective pressure for cystic fibrosis, J. R. Soc. Interface, 4, 91-98, doi: 10.1098/rsif.2006.0154.

100. Hill, A. V. (1949) The dimensions of animals and their muscular dynamics, Nature, 164, 820.

101. Harrison, J. F., Kaiser, A., and VandenBrooks, J. M. (2010) Atmospheric oxygen level and the evolution of insect body size, Proc. Biol. Sci., 277, 1937-1946, doi: 10.1098/rspb.2010.0001.

102. Holliday, R. (1995) Understanding Ageing, Cambridge University Press, doi: 10.1017/cbo9780511623233.

103. Trindade, L. S., Aigaki, T., Peixoto, A. A., Balduino, A., Mânica da Cruz, I. B., and Heddle, J. G. (2013) A novel classification system for evolutionary aging theories, Front. Genet., 4, 25, doi: 10.3389/fgene.2013.00025.

104. Gordon, I. J., Hester, A. J., and Festa-Bianchet, M. (2004) Review: The management of wild large herbivores to meet economic, conservation and environmental objectives, J. Appl. Ecol., 41, 1021-1031, doi: 10.1111/j.0021-8901.2004.00985.x.

105. Nilsen, E. B., Milner-Gulland, E. J., Schofield, L., Mysterud, A., Stenseth, N. C., and Coulson, T. (2007) Wolf reintroduction to Scotland: public attitudes and consequences for red deer management, Proc. R. Soc. B Biol. Sci., 274, 995-1003, doi: 10.1098/rspb.2006.0369.

106. McCay, C. M., Crowell, M. F., and Maynard, L. A. (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size, J. Nutr., 10, 63-79, doi: 10.1093/jn/10.1.63.

107. Sohal, R. S., and Weindruch, R. (1996) Oxidative stress, caloric restriction, and aging, Science, 273, 59-63, doi: 10.1126/science.273.5271.59.

108. Masoro, E. J. (2000) Caloric restriction and aging: an update, Exp. Gerontol., 35, 299-305, doi: 10.1016/s0531-5565(00)00084-x.

109. Shanley, D. P., and Kirkwood, T. B. (2000) Calorie restriction and aging: a life-history analysis, Evolution, 54, 740-750, doi: 10.1111/j.0014-3820.2000.tb00076.x.

110. Holliday, R. (1989) Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays, 10, 125-127, doi: 10.1002/bies.950100408.

111. Lemaître, J.-F., Ronget, V., Tidière, M., Allainé, D., Berger, V., Cohas, A., Colchero, F., Conde, D. A., Garratt, M., Liker, A., Marais, G. A. B., Scheuerlein, A., Székely, T., and Gaillard, J.-M. (2020) Sex differences in adult lifespan and aging rates of mortality across wild mammals, Proc. Natl. Acad. Sci. USA, 117, 8546-8553, doi: 10.1073/pnas.1911999117.

112. Gavrilov, L. A., and Gavrilova, N. S. (2002) Evolutionary theories of aging and longevity, Sci. World J., 2, 339-356, doi: 10.1100/tsw.2002.96.

113. Flatt, T. (2011) Survival costs of reproduction in Drosophila, Exp. Gerontol., 46, 369-375, doi: 10.1016/j.exger.2010.10.008.

114. Grandison, R. C., Piper, M. D. W., and Partridge, L. (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila, Nature, 462, 1061-1064, doi: 10.1038/nature08619.

115. Leroi, A. M., Chippindale, A. K., and Rose, M. R. (1994) Long-term laboratory evolution of a genetic life-history trade-off in Drosophila melanogaster. 1. The role of genotype-by-environment interaction, Evolution, 48, 1244-1257, doi: 10.1111/j.1558-5646.1994.tb05309.x.

116. Rose, M. R. (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster, Evolution, 38, 1004-1010, doi: 10.1111/j.1558-5646.1984.tb00370.x.

117. Zajitschek, F., Georgolopoulos, G., Vourlou, A., Ericsson, M., Zajitschek, S. R. K., Friberg, U., and Maklakov, A. A. (2019) Evolution under dietary restriction decouples survival from fecundity in Drosophila melanogaster females, J. Gerontol. A Biol. Sci. Med. Sci., 74, 1542-1548, doi: 10.1093/gerona/gly070.

118. Morley, J. E. (2001) Decreased food intake with aging, J. Gerontol. A Biol. Sci. Med. Sci., 56, 81-88, doi: 10.1093/gerona/56.suppl_2.81.

119. Flatt, T., and Partridge, L. (2018) Horizons in the evolution of aging, BMC Biol., 16, 93, doi: 10.1186/s12915-018-0562-z.

120. Cohen, A. A., Coste, C. F. D., Li, X. y., Bourg, S., and Pavard, S. (2020) Are trade‐offs really the key drivers of ageing and life span? Funct. Ecol., 34, 153-166, doi: 10.1111/1365-2435.13444.

121. Hamilton, W. D. (1963) The evolution of altruistic behavior, Am. Nat., 97, 354-356, doi: 10.1086/497114.

122. Hamilton, W. D. (1964) The genetical evolution of social behaviour. I, J. Theor. Biol., 7, 1-16, doi: 10.1016/0022-5193(64)90038-4.

123. Hamilton, W. D. (1964) The genetical evolution of social behaviour. II, J. Theor. Biol., 7, 17-52, doi: 10.1016/0022-5193(64)90039-6.

124. Kowald, A., and Kirkwood, T. B. L. (2016) Can aging be programmed? A critical literature review, Aging Cell, 15, 986-998, doi: 10.1111/acel.12510.

125. Cohen, A. A., Kennedy, B. K., Anglas, U., Bronikowski, A. M., Deelen, J., Dufour, F., Ferbeyre, G., Ferrucci, L., Franceschi, C., Frasca, D., Friguet, B., Gaudreau, P., Gladyshev, V. N., Gonos, E. S., Gorbunova, V., Gut, P., Ivanchenko, M., Legault, V., Lemaître, J.-F., Liontis, T., et al. (2020) Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework, Mech. Ageing Dev., 191, 111316, doi: 10.1016/j.mad.2020.111316.

126. Hampton, H. G., Watson, B. N. J., and Fineran, P. C. (2020) The arms race between bacteria and their phage foes, Nature, 577, 327-336, doi: 10.1038/s41586-019-1894-8.

127. Bramucci, A. R., and Case, R. J. (2019) Phaeobacter inhibens induces apoptosis-like programmed cell death in calcifying Emiliania huxleyi, Sci. Rep., 9, 5215, doi: 10.1038/s41598-018-36847-6.

128. Deponte, M. (2008) Programmed cell death in protists, Biochim. Biophys. Acta, 1783, 1396-1405, doi: 10.1016/j.bbamcr.2008.01.018.

129. Feng, Y., Hsiao, Y.-H., Chen, H.-L., Chu, C., Tang, P., and Chiu, C.-H. (2009) Apoptosis-like cell death induced by Salmonella in Acanthamoeba rhysodes, Genomics, 94, 132-137, doi: 10.1016/j.ygeno.2009.05.004.

130. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.

131. Hughes, P. W. (2017) Between semelparity and iteroparity: empirical evidence for a continuum of modes of parity, Ecol. Evol., 7, 8232-8261, doi: 10.1002/ece3.3341.

132. Wodinsky, J. (1977) Hormonal inhibition of feeding and death in octopus: control by optic gland secretion, Science, 198, 948-951, doi: 10.1126/science.198.4320.948.

133. Lopes, G. P., and Leiner, N. O. (2015) Semelparity in a population of Gracilinanus agilis (Didelphimorphia: Didelphidae) inhabiting the Brazilian cerrado, Mammal. Biol., 80, 1-6, doi: 10.1016/j.mambio.2014.08.004.

134. Fritz, R. S., Stamp, N. E., and Halverson, T. G. (1982) Iteroparity and semelparity in insects, Am. Nat., 120, 264-268, doi: 10.1086/283987.

135. Quinn, T. P. (2011) The Behavior and Ecology of Pacific Salmon and Trout, UBC Press.

136. Dickhoff, W. W. (1989) Salmonids and annual fishes: death after sex, in Development, Maturation, and Senescence of Neuroendocrine Systems, pp. 253-266, doi: 10.1016/b978-0-12-629060-8.50017-5.

137. Robertson, O. H., and Wexler, B. C. (1960) Histological changes in the organs and tissues of migrating and spawning Pacific salmon (genus Oncorhynchus), Endocrinology, 66, 222-239, doi: 10.1210/endo-66-2-222.

138. McBride, J. R., and van Overbeeke, A. P. (1971) Effects of androgens, Estrogens, and cortisol on the skin, stomach, liver, pancreas, and kidney in gonadectomized adult Sockeye Salmon (Oncorhynchus nerka), J. Fish. Res. Board Can., 28, 485-490, doi: 10.1139/f71-068.

139. Cederholm, C. J., Jeff Cederholm, C., Kunze, M. D., Murota, T., and Sibatani, A. (1999) Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems, Fisheries, 24, 6-15, doi: 10.1577/1548-8446(1999)024<0006:psc>2.0.co;2.

140. Galimov, E. R., Lohr, J. N., and Gems, D. (2019) When and how can death be an adaptation? Biochemistry (Moscow), 84, 1433-1437, doi: 10.1134/s0006297919120010.

141. Gorbunova, V., Seluanov, A., Mao, Z., and Hine, C. (2007) Changes in DNA repair during aging, Nucleic Acids Res., 35, 7466-7474, doi: 10.1093/nar/gkm756.

142. Rubinsztein, D. C., Mariño, G., and Kroemer, G. (2011) Autophagy and aging, Cell, 146, 682-695, doi: 10.1016/j.cell.2011.07.030.

143. Ben-Zvi, A., Miller, E. A., and Morimoto, R. I. (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging, Proc. Natl. Acad. Sci. USA, 106, 14914-14919, doi: 10.1073/pnas.0902882106.

144. Son, H. G., Seo, M., Ham, S., Hwang, W., Lee, D., An, S. W. A., Artan, M., Seo, K., Kaletsky, R., Arey, R. N., Ryu, Y., Ha, C. M., Kim, Y. K., Murphy, C. T., Roh, T.-Y., Nam, H. G., and Lee, S.-J. V. (2017) RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans, Nat. Commun., 8, 14749, doi: 10.1038/ncomms14749.

145. Lipinski, M. M., Zheng, B., Lu, T., Yan, Z., Py, B. F., Ng, A., Xavier, R. J., Li, C., Yankner, B. A., Scherzer, C. R., and Yuan, J. (2010) Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 107, 14164-14169, doi: 10.1073/pnas.1009485107.

146. Collin, G., Huna, A., Warnier, M., Flaman, J.-M., and Bernard, D. (2018) Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence, Cell Death Dis., 9, doi: 10.1038/s41419-018-0300-z.

147. Gong, H., Pang, J., Han, Y., Dai, Y., Dai, D., Cai, J., and Zhang, T.-M. (2014) Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice, Mol. Med. Rep., 10, 3296-3302, doi: 10.3892/mmr.2014.2648.

148. Smith, J. M. (1964) Group selection and kin selection, Nature, 201, 1145-1147, doi: 10.1038/2011145a0.

149. Lack, D. (1966) Population Studies of Birds, Oxford University Press, UK.

150. Andrewartha, H. G. (1954) The Distribution and Abundance of Animals, Univ Of Chicago Press, USA.

151. Markov, A. V., Barg, M. A., and Yakovleva, E. Y. (2018) Can aging develop as an adaptation to optimize natural selection? (application of computer modeling for searching conditions when the “Fable of hares” can explain the evolution of aging), Biochemistry, 83, 1504-1516, doi: 10.1134/S0006297918120088.

152. Finch, C. E. (2010) The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Lifespans, Elsevier.

153. Anderson, R. M., and May, R. M. (1979) Population biology of infectious diseases: Part I, Nature, 280, 361-367, doi: 10.1038/280361a0.

154. Schmid-Hempel, P. (2011) Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics, OUP Oxford.

155. Débarre, F., Lion, S., van Baalen, M., and Gandon, S. (2012) Evolution of host life-history traits in a spatially structured host-parasite system, Am. Nat., 179, 52-63, doi: 10.1086/663199.

156. Santiago, M. L., Range, F., Keele, B. F., Li, Y., Bailes, E., Bibollet-Ruche, F., Fruteau, C., Noë, R., Peeters, M., Brookfield, J. F. Y., Shaw, G. M., Sharp, P. M., and Hahn, B. H. (2005) Simian immunodeficiency virus infection in free-ranging Sooty Mangabeys (Cercocebus atys atys) from the Taï Forest, Côte d’Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2, J. Virol., 79, 12515-12527, doi: 10.1128/JVI.79.19.12515-12527.2005.

157. Marx, P. A., Alcabes, P. G., and Drucker, E. (2001) Serial human passage of simian immunodeficiency virus by unsterile injections and the emergence of epidemic human immunodeficiency virus in Africa, Philos. Trans. R. Soc. Lond. B Biol. Sci., 356, 911-920, doi: 10.1098/rstb.2001.0867.

158. Mayr, E. (1999) Systematics and the Origin of Species, from the Viewpoint of a Zoologist, Harvard University Press.

159. Pollock, G. B. (1983) Population viscosity and kin selection, Am. Nat., 122, 817-829, doi: 10.1086/284174.

160. Mitteldorf, J., and Wilson, D. S. (2000) Population viscosity and the evolution of altruism, J. Theor. Biol., 204, 481-496, doi: 10.1006/jtbi.2000.2007.

161. Pulliam, H. R., and Ronald Pulliam, H. (1988) Sources, sinks, and population regulation, Am. Nat., 132, 652-661, doi: 10.1086/284880.

162. Pulliam, H. R., Ronald Pulliam, H., and Danielson, B. J. (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics, Am. Nat., 137, S50-S66, doi: 10.1086/285139.

163. Schmid-Hempel, P. (2021) Evolutionary parasitology, 2 Edn., Oxford University Press, London, England.

164. Lafferty, K. D., and Kuris, A. M. (2009) Parasitic castration: the evolution and ecology of body snatchers, Trends Parasitol., 25, 564-572, doi: 10.1016/j.pt.2009.09.003.

165. Lima, N. R. W., Azevedo, J. d. S., Silva, L. G. d., and Dansa-Petretski, M. (2007) Parasitic castration, growth, and sex steroids in the freshwater bonefish Cyphocharax gilbert (Curimatidae) infested by Riggia paranensis (Cymothoidea), Neotrop. Ichthyol., 5, 471-478, doi: 10.1590/s1679-62252007000400006.

166. Sherman, K. J., Daling, J. R., and Weiss, N. S. (1987) Sexually transmitted diseases and tubal infertility, Sex. Transmitted Dis., 14, 12-16, doi: 10.1097/00007435-198701000-00003.

167. Schulz, K. F., Cates, W., Jr., and O’Mara, P. R. (1987) Pregnancy loss, infant death, and suffering: legacy of syphilis and gonorrhoea in Africa, Genitourin. Med., 63, 320-325, doi: 10.1136/sti.63.5.320.

168. Zaba, B., and Gregson, S. (1998) Measuring the impact of HIV on fertility in Africa, AIDS, 12 Suppl 1, S41-S50.

169. Smith, D. G., and Guinto, R. S. (1978) Leprosy and fertility, Hum. Biol., 50, 451-460.

170. Villa, E., Vukotic, R., Cammà, C., Petta, S., Di Leo, A., Gitto, S., Turola, E., Karampatou, A., Losi, L., Bernabucci, V., Cenci, A., Tagliavini, S., Baraldi, E., De Maria, N., Gelmini, R., Bertolini, E., Rendina, M., and Francavilla, A. (2012) Reproductive status is associated with the severity of fibrosis in women with hepatitis C, PLoS One, 7, e44624, doi: 10.1371/journal.pone.0044624.

171. Parikh, F. R., Nadkarni, S. G., Kamat, S. A., Naik, N., Soonawala, S. B., and Parikh, R. M. (1997) Genital tuberculosis – a major pelvic factor causing infertility in Indian women, Fertil. Steril., 67, 497-500, doi: 10.1016/s0015-0282(97)80076-3.

172. Kapranos, N., Petrakou, E., Anastasiadou, C., and Kotronias, D. (2003) Detection of herpes simplex virus, cytomegalovirus, and Epstein-Barr virus in the semen of men attending an infertility clinic, Fertil. Steril., 79 Suppl 3, 1566-1570, doi: 10.1016/s0015-0282(03)00370-4.

173. Rankin, D. J., Bargum, K., and Kokko, H. (2007) The tragedy of the commons in evolutionary biology, Trends Ecol. Evol., 22, 643-651, doi: 10.1016/j.tree.2007.07.009.

174. Anderson, R. M., and May, R. M. (1982) Coevolution of hosts and parasites, Parasitology, 85, 411-426, doi: 10.1017/s0031182000055360.

175. Altenberg, L. (2005) Evolvability suppression to stabilize far-sighted adaptations, Artif. Life, 11, 427-443, doi: 10.1162/106454605774270633.

176. Sherman, P. W., Jarvis, J. U. M., and Alexander, R. D. (2017) The Biology of the Naked Mole-Rat, Princeton University Press.

177. Sun, S., White, R. R., Fischer, K. E., Zhang, Z., Austad, S. N., and Vijg, J. (2020) Inducible aging in Hydra oligactis implicates sexual reproduction, loss of stem cells, and genome maintenance as major pathways, Geroscience, 42, 1119-1132, doi: 10.1007/s11357-020-00214-z.

178. Lindstedt, S. L., and Calder, W. A. (1976) Body size and longevity in birds, Condor, 78, 91-94, doi: 10.2307/1366920.

179. Sacher, G. A. (2008) Relation of Lifespan to Brain Weight and Body Weight in Mammals, Ciba Foundation Symposium – The Lifespan of Animals (Colloquia on Ageing, Vol. 5), 115-141, doi: 10.1002/9780470715253.ch9.

180. Peters, R. H. (1983) The Ecological Implications of Body Size, Cambridge University Press, doi: 10.1017/cbo9780511608551.

181. Read, A. F., and Harvey, P. H. (1989) Life history differences among the eutherian radiations, J. Zool., 219, 329-353, doi: 10.1111/j.1469-7998.1989.tb02584.x.

182. de Magalhães, J. P., Costa, J., and Church, G. M. (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts, J. Gerontol. A Biol. Sci. Med. Sci., 62, 149-160, doi: 10.1093/gerona/62.2.149.

183. Kapahi, P., Zid, B. M., Harper, T., Koslover, D., Sapin, V., and Benzer, S. (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway, Curr. Biol., 14, 885-890, doi: 10.1016/j.cub.2004.03.059.

184. Flurkey, K., Papaconstantinou, J., Miller, R. A., and Harrison, D. E. (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production, Proc. Natl. Acad. Sci. USA, 98, 6736-6741, doi: 10.1073/pnas.111158898.

185. Kraus, C., Pavard, S., and Promislow, D. E. L. (2013) The size-life span trade-off decomposed: why large dogs die young, Am. Nat., 181, 492-505, doi: 10.1086/669665.

186. Guevara-Aguirre, J., Balasubramanian, P., Guevara-Aguirre, M., Wei, M., Madia, F., Cheng, C. W., Hwang, D., Martin-Montalvo, A., Saavedra, J., Ingles, S., de Cabo, R., Cohen, P., and Longo, V. D. (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans, Sci. Transl. Med., 3, 70ra13, doi: 10.1126/scitranslmed.3001845.

187. Laron, Z., Kauli, R., Lapkina, L., and Werner, H. (2017) IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome, Mutat. Res. Rev. Mutat. Res., 772, 123-133, doi: 10.1016/j.mrrev.2016.08.002.

188. Fontana, L., Partridge, L., and Longo, V. D. (2010) Extending healthy life span – from yeast to humans, Science, 328, 321-326, doi: 10.1126/science.1172539.

189. Greer, K. A., Hughes, L. M., and Masternak, M. M. (2011) Connecting serum IGF-1, body size, and age in the domestic dog, Age, 33, 475-483, doi: 10.1007/s11357-010-9182-4.

190. Laron, Z. (2015) Lessons from 50 years of study of laron syndrome, Endocr. Pract., 21, 1395-1402, doi: 10.4158/EP15939.RA.

191. Rubner, M. (1908) Das Problem der Lebensdauer und seine Beziehungen zu Wachstum und Ernährung, Oldenbourg Wissenschaftsverlag, doi: 10.1515/9783486736380.

192. Pearl, R. (1928) The Rate of Living: Being an Account of Some Experimental Studies on the Biology of Life Duration, University of London press Ltd., London.

193. McCarter, R., Masoro, E. J., and Yu, B. P. (1985) Does food restriction retard aging by reducing the metabolic rate? Am. J. Physiol., 248, E488-E490, doi: 10.1152/ajpendo.1985.248.4.E488.

194. Beckman, K. B., and Ames, B. N. (1998) The free radical theory of aging matures, Physiol. Rev., 78, 547-581, doi: 10.1152/physrev.1998.78.2.547.

195. Munshi-South, J., and Wilkinson, G. S. (2010) Bats and birds: exceptional longevity despite high metabolic rates, Ageing Res. Rev., 9, 12-19, doi: 10.1016/j.arr.2009.07.006.

196. White, C. R., and Seymour, R. S. (2003) Mammalian basal metabolic rate is proportional to body mass2/3, Proc. Natl. Acad. Sci. USA, 100, 4046-4049, doi: 10.1073/pnas.0436428100.

197. Bennett, A. F. (1988) Structural and functional determinates of metabolic rate, Am. Zool., 28, 699-708, doi: 10.1093/icb/28.2.699.

198. Van Voorhies, W. A., and Ward, S. (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate, Proc. Natl. Acad. Sci. USA, 96, 11399-11403, doi: 10.1073/pnas.96.20.11399.

199. Trout, W. E., and Kaplan, W. D. (1970) A relation between longevity, metabolic rate, and activity in shaker mutants of Drosophila melanogaster, Exp. Gerontol., 5, 83-92, doi: 10.1016/0531-5565(70)90033-1.

200. Conti, B., Sanchez-Alavez, M., Winsky-Sommerer, R., Morale, M. C., Lucero, J., Brownell, S., Fabre, V., Huitron-Resendiz, S., Henriksen, S., Zorrilla, E. P., de Lecea, L., and Bartfai, T. (2006) Transgenic mice with a reduced core body temperature have an increased life span, Science, 314, 825-828, doi: 10.1126/science.1132191.

201. Flatt, T., and Heyland, A. (2011) Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs, Oxford University Press.

202. Shefferson, R. P. J., Owen, R., and Salguero-Gómez, R. (2017) The Evolution of Senescence in the Tree of Life, Cambridge University Press.

203. Fowler, K., and Partridge, L. (1989) A cost of mating in female fruitflies, Nature, 338, 760-761, doi: 10.1038/338760a0.

204. Chapman, T., Liddle, L. F., Kalb, J. M., Wolfner, M. F., and Partridge, L. (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products, Nature, 373, 241-244, doi: 10.1038/373241a0.

205. Liu, H., and Kubli, E. (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 100, 9929-9933, doi: 10.1073/pnas.1631700100.

206. Chapman, T., Bangham, J., Vinti, G., Seifried, B., Lung, O., Wolfner, M. F., Smith, H. K., and Partridge, L. (2003) The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference, Proc. Natl. Acad. Sci. USA, 100, 9923-9928, doi: 10.1073/pnas.1631635100.

207. Khazaeli, A. A., and Curtsinger, J. W. (2013) Pleiotropy and life history evolution in Drosophila melanogaster: uncoupling life span and early fecundity, J. Gerontol. A Biol. Sci. Med. Sci., 68, 546-553, doi: 10.1093/gerona/gls226.

208. Gagnon, A. (2015) Natural fertility and longevity, Fertil. Ster., 103, 1109-1116, doi: 10.1016/j.fertnstert.2015.03.030.

209. Kenyon, C. (2005) The plasticity of aging: insights from long-lived mutants, Cell, 120, 449-460, doi: 10.1016/j.cell.2005.02.002.

210. Hercus, M. J., Loeschcke, V., and Rattan, S. I. S. (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress, Biogerontology, 4, 149-156, doi: 10.1023/a:1024197806855.

211. Cypser, J. R., and Johnson, T. E. (2002) Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity, J. Gerontol. A Biol. Sci. Med. Sci., 57, B109-114, doi: 10.1093/gerona/57.3.b109.

212. Zhang, B., Jun, H., Wu, J., Liu, J., and Xu, X. Z. S. (2021) Olfactory perception of food abundance regulates dietary restriction-mediated longevity via a brain-to-gut signal, Nat. Aging, 1, 255-268, doi: 10.1038/s43587-021-00039-1.

213. Alcedo, J., and Kenyon, C. (2004) Regulation of C. elegans longevity by specific gustatory and olfactory neurons, Neuron, 41, 45-55, doi: 10.1016/s0896-6273(03)00816-x.

214. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., and Slavich, G. M. (2019) Chronic inflammation in the etiology of disease across the life span, Nat. Med., 25, 1822-1832, doi: 10.1038/s41591-019-0675-0.

215. Libert, S., Chao, Y., Chu, X., and Pletcher, S. D. (2006) Trade-offs between longevity and pathogen resistance in Drosophila melanogaster are mediated by NFkappaB signaling, Aging Cell, 5, 533-543, doi: 10.1111/j.1474-9726.2006.00251.x.

216. Vonk, W. I. M., Rainbolt, T. K., Dolan, P. T., Webb, A. E., Brunet, A., and Frydman, J. (2020) Differentiation drives widespread rewiring of the neural stem cell chaperone network, Mol. Cell, 78, 329-345.e329, doi: 10.1016/j.molcel.2020.03.009.

217. Stearns, S. C., Ackermann, M., Doebeli, M., and Kaiser, M. (2000) Experimental evolution of aging, growth, and reproduction in fruitflies, Proc. Natl. Acad. Sci. USA, 97, 3309-3313, doi: 10.1073/pnas.060289597.

218. Healy, K., Guillerme, T., Finlay, S., Kane, A., Kelly, S. B. A., McClean, D., Kelly, D. J., Donohue, I., Jackson, A. L., and Cooper, N. (2014) Ecology and mode-of-life explain lifespan variation in birds and mammals, Proc. Biol. Sci., 281, 20140298, doi: 10.1098/rspb.2014.0298.

219. Ricklefs, R. E. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span, Am. Nat., 152, 24-44, doi: 10.1086/286147.

220. Tidière, M., Gaillard, J.-M., Berger, V., Müller, D. W. H., Bingaman Lackey, L., Gimenez, O., Clauss, M., and Lemaître, J.-F. (2016) Comparative analyses of longevity and senescence reveal variable survival benefits of living in zoos across mammals, Sci. Rep., 6, 36361, doi: 10.1038/srep36361.

221. Thompson, W. (2013) Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters, Island Press.

222. Klass, M., and Hirsh, D. (1976) Non-ageing developmental variant of Caenorhabditis elegans, Nature, 260, 523-525, doi: 10.1038/260523a0.

223. Keller, L., and Genoud, M. (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing, Nature, 389, 958-960, doi: 10.1038/40130.

224. Dammann, P., Šumbera, R., Maßmann, C., Scherag, A., and Burda, H. (2011) Extended longevity of reproductives appears to be common in Fukomys mole-rats (Rodentia, Bathyergidae), PLoS One, 6, e18757, doi: 10.1371/journal.pone.0018757.

225. Schmidt, C. M., Jarvis, J. U. M., and Bennett, N. C. (2013) The long-lived queen: reproduction and longevity in female eusocial Damaraland mole-rats (Fukomys damarensis), Afr. Zool., 48, 193-196, doi: 10.3377/004.048.0116.

226. Zhan, S., Merlin, C., Boore, J. L., and Reppert, S. M. (2011) The monarch butterfly genome yields insights into long-distance migration, Cell, 147, 1171-1185, doi: 10.1016/j.cell.2011.09.052.

227. Da Silva, J. (2019) Plastic senescence in the honey bee and the disposable soma theory, Am. Nat., 194, 367-380, doi: 10.1086/704220.

228. Omholt, S. W. (2004) Epigenetic regulation of aging in honeybee workers, Sci. Aging Knowl. Environ., 2004, e28-pe28, doi: 10.1126/sageke.2004.26.pe28.

229. Winston, M. L. (1991) The Biology of the Honey Bee, Harvard University Press.

230. Lundie, A. E. (1925) The Flight Activities of the Honeybee, Washington, D.C. : U.S. Dept. of Agriculture, doi: 10.5962/bhl.title.108871.

231. Münch, D., and Amdam, G. V. (2010) The curious case of aging plasticity in honey bees, FEBS Lett., 584, 2496-2503, doi: 10.1016/j.febslet.2010.04.007.

232. Page, R. E., Jr., and Peng, C. Y. (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L, Exp. Gerontol., 36, 695-711, doi: 10.1016/s0531-5565(00)00236-9.

233. Rueppell, O., Bachelier, C., Fondrk, M. K., and Page, R. E., Jr. (2007) Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.), Exp. Gerontol., 42, 1020-1032, doi: 10.1016/j.exger.2007.06.002.

234. Visscher, P. K., and Dukas, R. (1997) Survivorship of foraging honey bees, Insectes Sociaux, 44, 1-5, doi: 10.1007/s000400050017.

235. Dukas, R. (2008) Mortality rates of honey bees in the wild, Insectes Sociaux, 55, 252-255, doi: 10.1007/s00040-008-0995-4.

236. Kramer, B. H., and Schaible, R. (2013) Life span evolution in eusocial workers – a theoretical approach to understanding the effects of extrinsic mortality in a hierarchical system, PLoS One, 8, e61813, doi: 10.1371/journal.pone.0061813.

237. Beros, S., Lenhart, A., Scharf, I., Negroni, M. A., Menzel, F., and Foitzik, S. (2021) Extreme lifespan extension in tapeworm-infected ant workers, R Soc. Open Sci., 8, 202118, doi: 10.1098/rsos.202118.

238. Iranzo, J., Lobkovsky, A. E., Wolf, Y. I., and Koonin, E. V. (2015) Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems, BMC Evol. Biol., 15, doi: 10.1186/s12862-015-0324-2.

239. Refardt, D., Bergmiller, T., and Kümmerli, R. (2013) Altruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection, Proc. Biol. Sci., 280, 20123035, doi: 10.1098/rspb.2012.3035.

240. Artwohl, J., Ball-Kell, S., Valyi-Nagy, T., Wilson, S. P., Lu, Y., and Park, T. J. (2009) Extreme susceptibility of African naked mole rats (Heterocephalus glaber) to experimental infection with herpes simplex virus type 1, Comp. Med., 59, 83-90.

241. Githure, J. I., Gardener, P. J., and Kinoti, G. K. (1988) Experimental infection of the naked mole-rat, Heterocephalus glaber, with Leishmania donovani, Transact. R. Soc. Tropic. Med. Hygiene, 82, 563, doi: 10.1016/0035-9203(88)90507-x.

242. Hill, W. C. O., Osman Hill, W. C., Porter, A., Bloom, R. T., Seago, J., and Southwick, M. D. (2009) Field and laboratory studies on the naked mole rat, Heterocephalus glaber, Proc. Zool. Soc. Lond., 128, 455-514, doi: 10.1111/j.1096-3642.1957.tb00272.x.

243. Ross-Gillespie, A., Justin O’Riain, M., and Keller, L. F. (2007) Viral epizootic reveals inbreeding depression in a habitually inbreeding mammal, Evolution, 61, 2268-2273, doi: 10.1111/j.1558-5646.2007.00177.x.

244. Hilton, H. G., Rubinstein, N. D., Janki, P., Ireland, A. T., Bernstein, N., Fong, N. L., Wright, K. M., Smith, M., Finkle, D., Martin-McNulty, B., Roy, M., Imai, D. M., Jojic, V., and Buffenstein, R. (2019) Single-cell transcriptomics of the naked mole-rat reveals unexpected features of mammalian immunity, PLoS Biol., 17, e3000528, doi: 10.1371/journal.pbio.3000528.

245. Amdam, G. V., Aase, A. L. T. O., Seehuus, S.-C., Kim Fondrk, M., Norberg, K., and Hartfelder, K. (2005) Social reversal of immunosenescence in honey bee workers, Exp. Gerontol., 40, 939-947, doi: 10.1016/j.exger.2005.08.004.

246. Galkin, F., Zhang, B., Dmitriev, S. E., and Gladyshev, V. N. (2019) Reversibility of irreversible aging, Ageing Res. Rev., 49, 104-114, doi: 10.1016/j.arr.2018.11.008.

247. Lemaitre, J.-M. (2013) Reversibility of cellular aging by reprogramming through an embryonic-like state: a new paradigm for human cell rejuvenation, Cent. As. J. Glob. Health, 2, 88, doi: 10.5195/cajgh.2013.88.

248. Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N. E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin-Burns, N., Krager, K., Ponnappan, U., Hauer-Jensen, M., Meng, A., and Zhou, D. (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat. Med., 22, 78-83, doi: 10.1038/nm.4010.

249. Katsimpardi, L., Litterman, N. K., Schein, P. A., Miller, C. M., Loffredo, F. S., Wojtkiewicz, G. R., Chen, J. W., Lee, R. T., Wagers, A. J., and Rubin, L. L. (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors, Science, 344, 630-634, doi: 10.1126/science.1251141.

250. Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., and Rando, T. A. (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, 433, 760-764, doi: 10.1038/nature03260.

251. Safdar, A., Bourgeois, J. M., Ogborn, D. I., Little, J. P., Hettinga, B. P., Akhtar, M., Thompson, J. E., Melov, S., Mocellin, N. J., Kujoth, G. C., Prolla, T. A., and Tarnopolsky, M. A. (2011) Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice, Proc. Natl. Acad. Sci. USA, 108, 4135-4140, doi: 10.1073/pnas.1019581108.

252. Gary, N. E., and Marston, J. (1971) Mating behaviour of drone honey bees with queen models (Apis mellifera L.), Animal Behav., 19, 299-304, doi: 10.1016/s0003-3472(71)80010-6.

253. Oakwood, M., Bradley, A. J., and Cockburn, A. (2001) Semelparity in a large marsupial, Proc. R. Soc. B Biol. Sci., 268, 407-411, doi: 10.1098/rspb.2000.1369.

254. Andrade, M. C. B. (1996) Sexual selection for male sacrifice in the australian redback spider, Science, 271, 70-72, doi: 10.1126/science.271.5245.70.

255. Robertson, O. H. (1961) prolongation of the life span of kokanee salmon (Oncorhynchus Nerka Kennerlyi) by castration before beginning of gonad development, Proc. Natl. Acad. Sci. USA, 47, 609-621, doi: 10.1073/pnas.47.4.609.

256. Stein-Behrens, B. A., and Sapolsky, R. M. (1992) Stress, glucocorticoids, and aging, Aging, 4, 197-210, doi: 10.1007/BF03324092.

257. McDonald, I. R., Lee, A. K., Bradley, A. J., and Than, K. A. (1981) Endocrine changes in dasyurid marsupials with differing mortality patterns, Gen. Comp. Endocrinol., 44, 292-301, doi: 10.1016/0016-6480(81)90004-6.

258. Barry, T. P., Unwin, M. J., Malison, J. A., and Quinn, T. P. (2001) Free and total cortisol levels in semelparous and iteroparous chinook salmon, J. Fish Biol., 59, 1673-1676, doi: 10.1111/j.1095-8649.2001.tb00230.x.

259. Strona, A. L. S., Levenhagem, M., and Leiner, N. O. (2015) Reproductive effort and seasonality associated with male-biased parasitism in Gracilinanus agilis (Didelphimorphia: Didelphidae) infected by Eimeria spp. (Apicomplexa: Eimeriidae) in the Brazilian cerrado, Parasitology, 142, 1086-1094, doi: 10.1017/S0031182015000402.

260. Chung, H. Y., Cesari, M., Anton, S., Marzetti, E., Giovannini, S., Seo, A. Y., Carter, C., Yu, B. P., and Leeuwenburgh, C. (2009) Molecular inflammation: underpinnings of aging and age-related diseases, Ageing Res. Rev., 8, 18-30, doi: 10.1016/j.arr.2008.07.002.

261. Franceschi, C., and Campisi, J. (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases, J. Gerontol. A Biol. Sci. Med. Sci., 69 Suppl 1, S4-S9, doi: 10.1093/gerona/glu057.

262. Kounatidis, I., Chtarbanova, S., Cao, Y., Hayne, M., Jayanth, D., Ganetzky, B., and Ligoxygakis, P. (2017) NF-κB immunity in the brain determines fly lifespan in healthy aging and age-related neurodegeneration, Cell Rep., 19, 836-848, doi: 10.1016/j.celrep.2017.04.007.

263. Boulias, K., Lieberman, J., and Greer, E. L. (2016) An epigenetic clock measures accelerated aging in treated HIV infection, Mol. Cell, 62, 153-155, doi: 10.1016/j.molcel.2016.04.008.

264. Gindin, Y., Gaggar, A., Lok, A. S., Janssen, H. L. A., Ferrari, C., Subramanian, G. M., Jiang, Z., Masur, H., Emmanuel, B., Poonia, B., and Kottilil, S. (2021) DNA methylation and immune cell markers demonstrate evidence of accelerated aging in patients with chronic hepatitis B virus or hepatitis C virus, with or without human immunodeficienct virus co-infection, Clin. Infect. Dis., 73, e184-e190, doi: 10.1093/cid/ciaa1371.

265. Ziuganov, V. V. (2005) A long-lived parasite extending the host life span: the pearl mussel Margaritifera margaritifera elongates host life by turns out the program of accelerated senescence in salmon Salmo salar, Dokl. Biol. Sci., 403, 291-294, doi: 10.1007/s10630-005-0115-9.

266. Finch, C. E., Morgan, T. E., Longo, V. D., and de Magalhaes, J. P. (2010) Cell resilience in species life spans: a link to inflammation? Aging Cell, 9, 519-526, doi: 10.1111/j.1474-9726.2010.00578.x.

267. George, J. C. c., “Craig” George, J. C., and Bockstoce, J. R. (2008) Two historical weapon fragments as an aid to estimating the longevity and movements of bowhead whales, Polar Biol., 31, 751-754, doi: 10.1007/s00300-008-0407-2.

268. Nielsen, J., Hedeholm, R. B., Heinemeier, J., Bushnell, P. G., Christiansen, J. S., Olsen, J., Ramsey, C. B., Brill, R. W., Simon, M., Steffensen, K. F., and Steffensen, J. F. (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus), Science, 353, 702-704, doi: 10.1126/science.aaf1703.

269. Wanamaker, A. D., Heinemeier, J., Scourse, J. D., Richardson, C. A., Butler, P. G., Eiríksson, J., and Knudsen, K. L. (2008) Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for north Icelandic shelf waters, Radiocarbon, 50, 399-412, doi: 10.1017/s0033822200053510.

270. Maher, C. R., and Lott, D. F. (2000) A review of ecological determinants of territoriality within vertebrate species, Am. Midl. Nat., 143, 1-29, doi: 10.1674/0003-0031(2000)143[0001:aroedo]2.0.co;2.

271. Brown, J. H., and Maurer, B. A. (1986) Body size, ecological dominance and Cope’s rule, Nature, 324, 248-250, doi: 10.1038/324248a0.

272. Wilkinson, G. S., and Adams, D. M. (2019) Recurrent evolution of extreme longevity in bats, Biol. Lett., 15, 20180860, doi: 10.1098/rsbl.2018.0860.

273. Tan, T. C. J., Rahman, R., Jaber-Hijazi, F., Felix, D. A., Chen, C., Louis, E. J., and Aboobaker, A. (2012) Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms, Proc. Natl. Acad. Sci. USA, 109, 4209-4214, doi: 10.1073/pnas.1118885109.

274. Ricklefs, R. E., and Cadena, C. D. (2007) Lifespan is unrelated to investment in reproduction in populations of mammals and birds in captivity, Ecol. Lett., 10, 867-872, doi: 10.1111/j.1461-0248.2007.01085.x.

275. Rodrigues, M. A., and Flatt, T. (2016) Endocrine uncoupling of the trade-off between reproduction and somatic maintenance in eusocial insects, Curr. Opin. Insect Sci., 16, 1-8, doi: 10.1016/j.cois.2016.04.013.

276. Sutherland, G. D., Harestad, A. S., Price, K., and Lertzman, K. (2000) Scaling of natal dispersal distances in terrestrial birds and mammals, Conserv. Ecol., 4, doi: 10.5751/es-00184-040116.

277. Herman, W. S., and Tatar, M. (2001) Juvenile hormone regulation of longevity in the migratory monarch butterfly, Proc. Biol. Sci., 268, 2509-2514, doi: 10.1098/rspb.2001.1765.

278. Quinn, T. P. (2018) The Behavior and Ecology of Pacific Salmon and Trout, 2 ed., University of Washington Press.