БИОХИМИЯ, 2022, том 87, вып. 6, с. 780–793

УДК 62.018.2:017.12

Т‑лимфоциты как мишени для SARS‑CoV‑2

Обзор

© 2022 Е.М. Куклинаibis_07@mail.ru

ФГБУН Пермский федеральный исследовательский центр УрО РАН, «Институт экологии и генетики микроорганизмов УрО РАН», 614081 Пермь, Россия

Поступила в редакцию 19.04.2022
После доработки 17.05.2022
Принята к публикации 17.05.2022

DOI: 10.31857/S0320972522060069

КЛЮЧЕВЫЕ СЛОВА: SARS‑CoV‑2, T‑лимфоциты, ACE2, CD147, Treg.

Аннотация

Несмотря на многочисленные данные об отсутствии или слабой экспрессии Т‑клетками главного функционального рецептора SARS‑CoV‑2, ангиотензин I‑превращающего фермента 2 (ACE2), последние данные литературы демонстрируют способность нового коронавируса эффективно инфицировать Т‑лимфоциты. Обзор посвящён анализу этих работ: он рассматривает альтернативные (АСЕ2-независимые) пути инфицирования клеток, определяет Т‑клеточные субпопуляции, служащие наиболее вероятными мишенями SARS‑CoV‑2, обсуждает формат взаимодействия вируса с клеткой, включая как инфекционные, так и неинфекционные механизмы регуляции Т‑лимфоцитов, а также оценивает роль вирус-зависимого поражения Т‑лимфоцитов в патогенезе COVID‑19. Особое внимание уделено регуляторным Т‑клеткам, как потенциальным мишеням SARS‑CoV‑2, а также возможному участию экзосом в регуляции чувствительности к вирусу Т‑лимфоцитов, присутствующих в периферических тканях.

Сноски

* Адресат для корреспонденции.

Финансирование

Исследование выполнено в рамках государственного задания (тема госрегистрации № АААА‑А19‑119112290007‑7).

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., et al. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579, 270-273, doi: 10.1038/s41586-020-2012-7.

2. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, 181, 271-280 e8, doi: 10.1016/j.cell.2020.02.052.

3. Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G., et al. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol., 203, 631-637, doi: 10.1002/path.1570.

4. Radzikowska, U., Ding, M., Tan, G., Zhakparov, D., Peng, Y., et al. (2020) Distribution of ACE2, CD147, CD26 and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors, Allergy, 75, 2829-2845, doi: 10.1111/all.14429.

5. Wang, K., Chen, W., Zhang, Z., Deng, Y., Lian, J.-Q., et al. (2020) CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells, Signal. Transduct. Target Ther., 5, 283, doi: 10.1038/s41392-020-00426-x.

6. Schmid, E. T., Pang, I. K., Silva, E. A. C., Bosurgi, L., Miner, J. J., et al. (2016) AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity, eLife, 5, e12414, doi: 10.7554/eLife.12414.

7. Wang, S., Qiu, Z., Hou, Y., Deng, X., Xu, W., et al. (2021) AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells, Cell Res., 31, 126-140, doi: 10.1038/s41422-020-00460-y.

8. Gu, Y., Cao, J., Zhang, X., Gao, H., Wang, H., et al. (2020) Interaction network of SARS-CoV-2 with host receptome through spike protein, BioRxiv, doi: 10.1101/2020.09.09.287508.

9. Grigoriou, M., Banos, A., Hatzioannou, A., Kloetgen, A., Kouzis, P., et al. (2021) Regulatory T cell transcriptomic reprogramming characterizes adverse events by checkpoint inhibitors in solid tumors, Cancer Immunol. Res., 9, 726-734, doi: 10.1158/2326-6066.CIR-20-0969.

10. Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., et al. (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury, Nat. Med., 11, 875-879, doi: 10.1038/nm1267.

11. Hoffmann, M. A., Kleine-Weber, H., and Pöhlmann, S. (2020) Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells, Mol. Cell, 78, 779-784, doi: 10.1016/j.molcel.2020.04.022.

12. Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., et al. (2011) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry, J. Virol., 85, 873-882, doi: 10.1128/JVI.02062-10.

13. Iwata‐Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., et al. (2019) TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection, J. Virol., 93, e01815‐18, doi: 10.1128/JVI.01815-18.

14. Zhang, M. Y., Zhang, Y., Wu, X.-D., Zhang, K., Lin, P, e al. (2018) Disrupting CD147-RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum, Blood, 10, 1111-1121, doi: 10.1182/blood-2017-08-802918.

15. Pushkarsky, T., Zybarth, G., Dubrovsky, L., Yurchenko, V., Tang, H., et al. (2001) CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A, Proc. Natl. Acad. Sci. USA, 11, 6360-6365, doi: 10.1073/pnas.111583198.

16. Bernard, S. C. Simpson, N., Join-Lambert, O., Federici, C., Laran-Chich, M.-P., et al. (2014) Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization, Nat. Med., 7, 725-731, doi: 10.1038/nm.3563.

17. Chen, Z. Mi, L., Xu, J., Yu, J., Wang, X., et al. (2005) Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus, J. Infect. Dis., 5, 755-760, doi: 10.1086/427811.

18. Shilts, J., Crozier, T. W. M., Greenwood, E. J. D., Lehner, P. J., and Wright, G. J. (2021) No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor, Sci. Rep., 11, 413, doi: 10.1038/s41598-020-80464-1.

19. Ragotte, R. J., Pulido, D., Donnellan, F. R., Hill, M. L., Gorini, G., et al. (2021) Human basigin (CD147) does not directly interact with SARS-Cov-2 spike glycoprotein, mSphere, 6, e0064721, doi: 10.1128/mSphere.00647-21.

20. Fenizia, C., Galbiati, S., Vanetti, C., Vago, R., Clerici, M., et al. (2021) SARS-CoV-2 entry: at the crossroads of CD147 and ACE2, Cells, 10, doi: 10.3390/cells10061434.

21. Goruppi, S., Ruaro, E., and Schneider, C. (1996) Gas6, the ligand of Axl tyrosine kinase receptor, has mitogenic and survival activities for serum starved NIH3T3 fibroblasts, Oncogene, 12, 471-480.

22. Stitt, T. N., Conn, G., Gore, M., Lai, C., Bruno, J., et al. (1995) The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases, Cell, 80, 661-670, doi: 10.1016/0092-8674(95)90520-0.

23. Seidah, N. G., Chretien, M., and Mbikay, M. (2018) The ever-expanding saga of the proprotein convertases and their roles in body homeostasis: emphasis on novel proprotein convertase subtilisin kexin number 9 functions and regulation, Curr. Opin. Lipidol., 29, 144-150, doi: 10.1097/MOL.0000000000000484.

24. Mao, B., Wu, W., Davidson, G., Marhold, J., Li, M., et al. (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signaling, Nature, 417, 664-667, doi: 10.1038/nature756.

25. Staring, J., van den Hengel, L. G., Raaben, M., Blomen, V. A., Carette, J. I., et al. (2018) KREMEN1 is a host entry receptor for a major group of enteroviruses, Cell Host Microbe, 23, 636-643.e635, doi: 10.1016/j.chom.2018.03.019.

26. Gu, Y., Cao, J., Zhang, X., Gao, H., Wang, Y., et al. (2022) Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2, Cell Res., 32, 24-37, doi: 10.1038/s41422-021-00595-6.

27. Cantuti-Castelvetri, L., Ojha, R., Pedro L. D., Djannatian, M., Franz, J., et al. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity, Science, 370, 856-860, doi: 10.1126/science.abd2985.

28. Seyran, M., Takayama, K., Uversky, V. N., Lundstrom, K., Palù, G., et al. (2020) The structural basis of accelerated host cell entry by SARS-CoV-2 dagger, FEBS J., doi: 10.1111/febs.15651.

29. Clausen, T. M., Sandoval, D. R., Spliid, C. B., Pihl, J., Perrett, H. R., et al. (2020) SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2, Cell, 183, 1043-1057, doi: 10.1016/j.cell.2020.09.033.

30. Thépaut, M., Luczkowiak, J., Vivès, C., Labiod, N., Bally, I., et al. (2021) DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist, PLoS Pathog., 17, e1009576, doi: 10.1371/journal.ppat.1009576.

31. Yan, S., and Wu, G. (2020) Is lymphopenia different between SARS and COVID-19 patients? FASEB J., 35, e21245, doi: 10.1096/fj.202002512.

32. Bertram, S., Lavender, A. H. H., Gierer, S., Danisch, S., Perin, P., et al. (2012) Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts, PLoS One, 7, e35876, doi: 10.1371/journal.pone.0035876.

33. Lukassen, S., Chua, R., Trefzer, T., Kahn, N. C., Schneider, M. A., et al. (2020) SARS-CoV-2 receptor ACE2 and TMPRSS2are primarily expressed in bronchial transient secretory cells, EMBO J., 39, e105114, doi: 10.15252/embj.20105114.

34. Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., et al. (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is enriched in specific cell subsets across tissues, Cell, 181, 1016-1035.e19, doi: 10.1016/j.cell.2020.04.035.

35. Gurunathan, S., Kang, M. H., and Kim, J.-H. (2021) Diverse effects of exosomes on COVID-19: a perspective of progress from transmission to therapeutic developments, Front. Immunol., 12, 716407, doi: 10.3389/fimmu.2021.716407.

36. Wang, J., Chen, S., and Bihl, J. (2020) Exosome-mediated transfer of ACE2 (angiotensin-converting enzyme 2) from endothelial progenitor cells promotes survival and function of endothelial cell, Oxid. Med. Cell Longev., 4213541, doi: 10.1155/2020/4213541.

37. El-Shennawy, L., Hoffmann, A. D., Dashzeveg, N. K., Mehl, P. J., Yu, Z., et al. (2020) Circulating ACE2-expressing exosomes block SARS-CoV-2 infection as an innate antiviral mechanism, bioRxiv, doi: 10.1101/2020.12.03.407031.

38. Mobini, S., Chizari, M., Mafakher, L., Rismani, E., and Rismani, E. (2021) Structure-based study of immune receptors as eligible binding targets of coronavirus SARS-CoV-2 spike protein, J. Mol. Graph. Model., 108, 107997, doi: 10.1016/j.jmgm.2021.107997.

39. Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., et al. (2005) Multiple organ infection and the pathogenesis of SARS, J. Exp. Med., 202, 415-424, doi: 10.1084/jem.20050828.

40. Shen, X.-R., Geng, R., Li, Q., Chen, Y., Li, S.-F., et al. (2022) ACE2-independent infection of T lymphocytes by SARS-CoV-2, Signal. Transduct. Target Ther., 7, 83, doi: 10.1038/s41392-022-00919-x.

41. Davanzo, G. G., Codo, A. C., Brunetti, N. S., Boldrini, V., Knittel, T. L., et al. (2020) SARS-CoV-2 uses CD4 to infect T helper lymphocytes, MedRxiv, doi: 10.1101/2020.09.25.20200329.

42. Pontelli, M. C., Castro, I. A., Martins, R. B., Veras, F. P., La Serra, L., et al. (2020) Infection of human lymphomononuclear cells by SARS-CoV-2, bioRxiv, doi: 10.1101/2020.07.28.225912.

43. Ren, X., Wen, W., Fan, X., Hou, W., Su, B., et al. (2021) COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas, Cell, 184, 1895-1913.e19, doi: 10.1016/j.cell.2021.01.053.

44. Bian, X.W., COVID-19 Pathology Team (2020) Autopsy of COVID-19 victims in China, Natl. Sci. Rev., 7, 1414-1418, doi: 10.1093/nsr/nwaa123.

45. Shaik, M., Peng, H., Lu, J., Rits-Volloch, S., Xu, C., et al. (2019) Structural basis of coreceptor recognition by HIV-1 envelope spike, Nature, 565, 318-323, doi: 10.1038/s41586-018-0804-9.

46. Iliopoulou, M., Nolan, R., Alvarez, L., Watanabe, Y., Coomer, C. A., et al. (2018) A dynamic three-step mechanism drives the HIV-1 pre-fusion reaction, Nat. Struct. Mol. Biol., 25, 814-822, doi: 10.1038/s41594-018-0113-x.

47. Cheng, M. H., Zhang, S., Porritt, R. A., Rivas, M. N., Paschold, L., et al. (2020) Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation, Proc. Natl Acad. Sci. USA, 117, 25254-25262, doi: 10.1073/pnas.2010722117.

48. Shen, Z. T., and Sigalov, A. B. (2016) SARS coronavirus fusion peptide-derived sequence suppresses collagen-induced arthritis in DBA/1J Mice, Sci. Rep., 6, 28672, doi: 10.1038/srep28672.

49. Sigalov, A. B. (2022) SARS-CoV-2 may affect the immune response via direct inhibition of T cell receptor: mechanistic hypothesis and rationale, Biochimie, 195, 86-89, doi: 10.1016/j.biochi.2021.11.005.

50. Wang, F., Hou, H., Luo, Y., Tang, G., Wu, S., et al. (2020) The laboratory tests and host immunity of COVID-19 patients with different severity of illness, JCI Insight, 5, doi: 10.1172/jci.insight.137799.

51. Yang, X., Yu, Y., and Xu, J. (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir. Med., doi: 10.1016/S2213-2600(20)30079-5.

52. Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., et al. (2020) Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19), Front. Immunol., 11, 1-7, doi: 10.3389/fimmu.2020.00827.

53. Kim, C. G., Kim, G., Kim, K. H., Park, S., Shin, S., et al. (2021) Distinct exhaustion features of T lymphocytes shape the tumor-immune microenvironment with therapeutic implication in patients with non-small-cell lung cancer, J. Immunother. Cancer, 9, e002780, doi: 10.1136/jitc-2021-002780.

54. Solstad, T., Bains, S. J., Landskron, J., Aandahl, E. M., Thiede, B., et al. (2011) CD147 (Basigin/Emmprin) identifies FoxP3+CD45RO+CTLA4+-activated human regulatory T cells, Blood, 118, 5141-5151.

55. Geng, J., Chen, R., Yang, F.-F., Lin, P., Zhu, Y.-M., et al. (2021) CD98-induced CD147 signaling stabilizes the Foxp3 protein to maintain tissue homeostasis, Cell. Mol. Immunol., 18, 2618-2631, doi: 10.1038/s41423-021-00785-7.

56. Zhao, G.-J., Zheng, J.-Y., Bian, J.-L., Chen, L.-W., Dong, N, et al. (2017) Growth arrest-specific 6 enhances the suppressive function of CD4+CD25+ regulatory T cells mainly through Axl receptor, Mediators Inflamm., 6848430, doi: 10.1155/2017/6848430.

57. Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., et al. (2020) Dysregulation of immune response in patients with COVID-19 in Wuhan, China, Clin. Infect. Dis., 71, 762-768, doi: 10.1093/cid/ciaa248.

58. Renno, T., Wilson, A., Dunkel, C., Coste, I., Maisnier-Patin, K., et al. (2002) A role for CD147 in thymic development, J. Immunol., 168, 4946-4950, doi: 10.4049/jimmunol.168.10.4946.

59. Damsker, J. M., Bukrinsky, M. I., and Constant, S. L. (2007) Preferential chemotaxis of activated human CD4+ T cells by extracellular cyclophilin A, J. Leukoc. Biol., 82, 613-618, doi: 10.1189/jlb.0506317.

60. Koch, C., Staffler, G., Huttinger, R., Hilgert, I., Prager, E., et al. (1999) T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density, Int. Immunol., 11, 777-786, doi: 10.1093/intimm/11.5.777.

61. Kwon, Y., Nukala, S. B., Srivastava, S., Miyamoto, H., Ismail, N. I., et al. (2020) Detection of viral RNA fragments in human iPSC-cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding-sequence-overexpressing lung epithelial cells, bioRxiv, doi: 10.1101/2020.05.14.093583.