БИОХИМИЯ, 2021, том 86, вып. 9, с. 1273–1313

УДК 577.12

Неканонические механизмы инициации трансляции мРНК вирусов эукариот

Обзор

© 2021 И.И. Сорокин 1,2,3, К.С. Василенко 2, И.М. Теренин 1, Н.О. Калинина 1,4, В.И. Агол 1,5, С.Е. Дмитриев 1,6,7*sergey.dmitriev@belozersky.msu.ru

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119234 Москва, Россия

Институт белка РАН, 142290 Пущино, Московская обл., Россия

Центр исследований молекулярных механизмов старения и возрастных заболеваний, Московский физико-технический институт, 141701 Долгопрудный, Московская обл., Россия

Институт биоорганической химии имени акад. М.М. Шемякина и Ю.А. Овчинникова РАН, 117997 Москва, Россия

ФГБНУ Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН (Институт полиомиелита), 108819 Москва, Россия

Институт молекулярной биологии им. В.А. Энгельгардта РАН, 119991 Москва, Россия

Московский государственный университет имени М.В. Ломоносова, факультет биоинженерии и биоинформатики, 119234 Москва, Россия

Поступила в редакцию 14.06.2021
После доработки 04.08.2021
Принята к публикации 04.08.2021

DOI: 10.31857/S0320972521090049

КЛЮЧЕВЫЕ СЛОВА: внутренняя инициация трансляции, кэп-независимая трансляция, VPg, TURBS-опосредованная реинициация, кольцевые РНК, факторы инициации трансляции eIF2 и eIF4F, пикорнавирусы PV и EMCV, флавивирусы HCV и DENV, лентивирусы HIV-1 и HIV-2, коронавирус SARS-CoV-2.

Аннотация

Для производства своих белков вирусы используют трансляционный аппарат заражённой клетки. При этом их мРНК вынуждены вступать в конкуренцию за рибосомы и трансляционные факторы с многочисленными клеточными матрицами. Чтобы не проиграть в этой борьбе, вирусы применяют специальные стратегии. мРНК многих эукариотических вирусов, размножающихся в цитоплазме, не имеют m7G-кэпа на 5′-конце. Однако они могут содержать структуры, привлекающие факторы трансляции и рибосомы альтернативными способами – например, участки внутреннего связывания рибосом (IRES-элементы), которые делают их трансляцию не зависящей от 5′-конца и, как следствие, от m7G-кэпа. Другие вирусные мРНК содержат кэп-независимые трансляционные энхансеры (CITE-элементы), которые могут быть расположены, в том числе и в 3′-нетранслируемой области (3′-НТО). В тех случаях, когда посадка рибосомы на мРНК происходит по кэп-зависимому пути, особые структуры в 5′-НТО могут менять формат рибосомного сканирования и узнавания стартового кодона. Необходимость компактизировать геном зачастую приводит к наличию в вирусных мРНК внутренних рамок, для трансляции которых могут использоваться разнообразные механизмы – например, пропускающее сканирование, соскальзывание 43S-комплекса, шунтирование или сопряжённая терминация-реинициация, требующие особых цис-действующих элементов в мРНК. Некоторые из перечисленных особенностей делают вирусные мРНК менее требовательными к набору факторов инициации трансляции, обеспечивая устойчивость к условиям клеточного стресса и антивирусным механизмам клетки. Более того, вирусы могут создавать конкурентные преимущества для трансляции своих мРНК, инактивируя отдельные трансляционные факторы, подменяя их своими или провоцируя развитие стрессового ответа. Многие вирусы реорганизуют мембранные структуры клетки, в том числе с целью создания вирусных трансляционных «фабрик», пространственно изолируя места синтеза своих белков от действия антивирусных систем и обогащая их трансляционными компонентами. Тем не менее зачастую именно трансляция является ахиллесовой пятой их жизненного цикла. Лучшее понимание неканонических механизмов инициации трансляции вирусных мРНК даёт дополнительные ключи к разработке новых подходов в антивирусной терапии.

Текст статьи

Пожалуйста, введите код, чтобы получить PDF файл с полным текстом статьи:

captcha

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда: гранты № 19-74-20186 (К.С.В., раздел «Структурные элементы в 3′-НТО вирусных мРНК, вовлечённые в инициацию трансляции») и № 20-14-00178 (Н.О.К., остальные разделы).

Благодарности

Авторы благодарны А.А. Богданову за приглашение в тематический сборник, посвящённый памяти А.С. Спирина, а также А.А. Аграновскому и М.В. Щепетильникову за обсуждение отдельных разделов обзора. И.И.С. и С.Е.Д. входят в состав Междисциплинарной научно-образовательной школы Московского университета «Молекулярные технологии живых систем и синтетическая биология».

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Rodrigues, R. A. L., da Silva, L. C. F., and Abrahão, J. S. (2020) Translating the language of giants: translation-related genes as a major contribution of giant viruses to the virosphere, Arch. Virol., 165, 1267-1278, doi: 10.1007/s00705-020-04626-2.

2. Pelletier, J., and Sonenberg, N. (2019) The organizing principles of eukaryotic ribosome recruitment, Annu. Rev. Biochem., 88, 307-335, doi: 10.1146/annurev-biochem-013118-111042.

3. Hinnebusch, A. G. (2014) The scanning mechanism of eukaryotic translation initiation, Annu. Rev. Biochem., 83, 779-812, doi: 10.1146/annurev-biochem-060713-035802.

4. Alekhina, O. M., and Vassilenko, K. S. (2012) Translation initiation in eukaryotes: versatility of the scanning model, Biochemistry (Moscow), 77, 1465-1477, doi: 10.1134/S0006297912130056.

5. Eliseeva, I. A., Lyabin, D. N., and Ovchinnikov, L. P. (2013) Poly(A)-binding proteins: structure, domain organization, and activity regulation, Biochemistry (Moscow), 78, 1377-1391, doi: 10.1134/S0006297913130014.

6. Hinnebusch, A. G. (2017) Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation, Trends Biochem. Sci., 42, 589-611, doi: 10.1016/j.tibs.2017.03.004.

7. Kozak, M. (2002) Pushing the limits of the scanning mechanism for initiation of translation, Gene, 299, 1-34, doi: 10.1016/s0378-1119(02)01056-9.

8. Terenin, I. M., Akulich, K. A., Andreev, D. E., Polyanskaya, S. A., Shatsky, I. N., and Dmitriev, S. E. (2016) Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis, Nucleic Acids Res., 44, 1882-1893, doi: 10.1093/nar/gkv1514.

9. Latorre, P., Kolakofsky, D., and Curran, J. (1998) Sendai virus Y proteins are initiated by a ribosomal shunt, Mol. Cell Biol., 18, 5021-5031, doi: 10.1128/MCB.18.9.5021.

10. Firth, A. E., and Brierley, I. (2012) Non-canonical translation in RNA viruses, J. Gen. Virol., 93, 1385-1409, doi: 10.1099/vir.0.042499-0.

11. Taliansky, M. E., and Robinson, D. J. (2003) Molecular biology of umbraviruses: phantom warriors, J. Gen. Virol., 84, 1951-1960, doi: 10.1099/vir.0.19219-0.

12. Matsuda, D., and Dreher, T. W. (2006) Close spacing of AUG initiation codons confers dicistronic character on a eukaryotic mRNA, RNA, 12, 1338-1349, doi: 10.1261/rna.67906.

13. Kozak, M. (1995) Adherence to the first-AUG rule when a second AUG codon follows closely upon the first, Proc. Natl. Acad. Sci. USA, 92, 2662-2666, doi: 10.1073/pnas.92.7.2662.

14. Dasso, M. C., Milburn, S. C., Hershey, J. W., and Jackson, R. J. (1990) Selection of the 5′-proximal translation initiation site is influenced by mRNA and eIF-2 concentrations, Eur. J. Biochem., 187, 361-371, doi: 10.1111/j.1432-1033.1990.tb15313.x.

15. Frolov, I., and Schlesinger, S. (1994) Translation of Sindbis virus mRNA: effects of sequences downstream of the initiating codon, J. Virol., 68, 8111-8117, doi: 10.1128/JVI.68.12.8111-8117.1994.

16. Ventoso, I., Sanz, M. A., Molina, S., Berlanga, J. J., Carrasco, L., and Esteban, M. (2006) Translational resistance of late alphavirus mRNA to eIF2alpha phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR, Genes Dev., 20, 87-100, doi: 10.1101/gad.357006.

17. Pappas, C. L., Tzeng, W. P., and Frey, T. K. (2006) Evaluation of cis-acting elements in the rubella virus subgenomic RNA that play a role in its translation, Arch. Virol., 151, 327-346, doi: 10.1007/s00705-005-0614-x.

18. Gorchakov, R., Frolova, E., Williams, B. R., Rice, C. M., and Frolov, I. (2004) PKR-dependent and -independent mechanisms are involved in translational shutoff during Sindbis virus infection, J. Virol., 78, 8455-8467, doi: 10.1128/JVI.78.16.8455-8467.2004.

19. Sanz, M. A., Castelló, A., Ventoso, I., Berlanga, J. J., and Carrasco, L. (2009) Dual mechanism for the translation of subgenomic mRNA from Sindbis virus in infected and uninfected cells, PLoS One, 4, e4772, doi: 10.1371/journal.pone.0004772.

20. Garcia-Moreno, M., Sanz, M. A., Pelletier, J., and Carrasco, L. (2013) Requirements for eIF4A and eIF2 during translation of Sindbis virus subgenomic mRNA in vertebrate and invertebrate host cells, Cell Microbiol., 15, 823-840, doi: 10.1111/cmi.12079.

21. Carrasco, L., Sanz, M. A., and Gonzalez-Almela, E. (2018) The regulation of translation in alphavirus-infected cells, Viruses, 10, 70, doi: 10.3390/v10020070.

22. Skabkin, M. A., Skabkina, O. V., Dhote, V., Komar, A. A., Hellen, C. U., and Pestova, T. V. (2010) Activities of Ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling, Genes Dev., 24, 1787-1801, doi: 10.1101/gad.1957510.

23. Sanz, M. A., González Almela, E., and Carrasco, L. (2017) Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D, Sci. Rep., 7, 43876, doi: 10.1038/srep43876.

24. Clyde, K., and Harris, E. (2006) RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication, J. Virol., 80, 2170-2182, doi: 10.1128/JVI.80.5.2170-2182.2006.

25. Edgil, D., Polacek, C., and Harris, E. (2006) Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited, J. Virol., 80, 2976-2986, doi: 10.1128/JVI.80.6.2976-2986.2006.

26. Fütterer, J., Kiss-László, Z., and Hohn, T. (1993) Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA, Cell, 73, 789-802, doi: 10.1016/0092-8674(93)90257-q.

27. Curran, J., and Kolakofsky, D. (1988) Scanning independent ribosomal initiation of the Sendai virus X protein, EMBO J., 7, 2869-2874, doi: 10.1002/j.1460-2075.1988.tb03143.x.

28. de Breyne, S., Simonet, V., Pelet, T., and Curran, J. (2003) Identification of a cis-acting element required for shunt-mediated translational initiation of the Sendai virus Y proteins, Nucleic Acids Res., 31, 608-618, doi: 10.1093/nar/gkg143.

29. Yueh, A., and Schneider, R. J. (2000) Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA, Genes Dev., 14, 414-421.

30. Dmitriev, S. E., Terenin, I. M., Dunaevsky, Y. E., Merrick, W. C., and Shatsky, I. N. (2003) Assembly of 48S translation initiation complexes from purified components with mRNAs that have some base pairing within their 5′-untranslated regions, Mol. Cell. Biol., 23, 8925-8933, doi: 10.1128/MCB.23.24.8925-8933.2003.

31. Xi, Q., Cuesta, R., and Schneider, R. J. (2004) Tethering of eIF4G to adenoviral mRNAs by viral 100k protein drives ribosome shunting, Genes Dev., 18, 1997-2009, doi: 10.1101/gad.1212504.

32. Rajyaguru, P., and Parker, R. (2012) RGG motif proteins: modulators of mRNA functional states, Cell Cycle, 11, 2594-2599, doi: 10.4161/cc.20716.

33. Dolph, P. J., Racaniello, V., Villamarin, A., Palladino, F., and Schneider, R. J. (1988) The adenovirus tripartite leader may eliminate the requirement for cap-binding protein complex during translation initiation, J. Virol., 62, 2059-2066, doi: 10.1128/JVI.62.6.2059-2066.1988.

34. Pooggin, M. M., and Ryabova, L. A. (2018) Ribosome shunting, polycistronic translation, and evasion of antiviral defenses in plant pararetroviruses and beyond, Front. Microbiol., 9, 644, doi: 10.3389/fmicb.2018.00644.

35. Pestova, T. V., and Kolupaeva, V. G. (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection, Genes Dev., 16, 2906-2922, doi: 10.1101/gad.1020902.

36. Hann, L. E., and Gehrke, L. (1995) mRNAs containing the unstructured 5′ leader sequence of alfalfa mosaic virus RNA 4 translate inefficiently in lysates from poliovirus-infected HeLa cells, J. Virol., 69, 4986-4993, doi: 10.1128/JVI.69.8.4986-4993.1995.

37. Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., and Wilson, T. M. (1987) A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo, Nucleic Acids Res., 15, 8693-8711, doi: 10.1093/nar/15.21.8693.

38. Agalarov, S., Sakharov, P. A., Fattakhova, D., Sogorin, E. A., and Spirin, A. S. (2014) Internal translation initiation and eIF4F/ATP-independent scanning of mRNA by eukaryotic ribosomal particles, Sci. Rep., 4, 4438, doi: 10.1038/srep04438.

39. Yang, Z., Martens, C. A., Bruno, D. P., Porcella, S. F., and Moss, B. (2012) Pervasive initiation and 3′-end formation of poxvirus postreplicative RNAs, J. Biol. Chem., 287, 31050-31060, doi: 10.1074/jbc.M112.390054.

40. Vopálenský, V., Sýkora, M., Mělková, Z., Mašek, T., and Pospišek, M. (2020) Transcripts of vaccinia virus postreplicative genes do not contain a 5′ methylguanosine cap, bioRxiv, doi: 10.1101/2020.07.15.204867.

41. Shirokikh, N. E., and Spirin, A. S. (2008) Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors, Proc. Natl. Acad. Sci. USA, 105, 10738-10743, doi: 10.1073/pnas.0804940105.

42. Mulder, J., Robertson, M. E., Seamons, R. A., and Belsham, G. J. (1998) Vaccinia virus protein synthesis has a low requirement for the intact translation initiation factor eIF4F, the cap-binding complex, within infected cells, J. Virol., 72, 8813-8819, doi: 10.1128/JVI.72.11.8813-8819.1998.

43. Bablanian, R., Goswami, S. K., Esteban, M., Banerjee, A. K., and Merrick, W. C. (1991) Mechanism of selective translation of vaccinia virus mRNAs: differential role of poly(A) and initiation factors in the translation of viral and cellular mRNAs, J. Virol., 65, 4449-4460, doi: 10.1128/JVI.65.8.4449-4460.1991.

44. Vopálenský, V., Sýkora, M., Mašek, T., and Pospišek, M. (2019) Messenger RNAs of yeast virus-like elements contain non-templated 5′ Poly(A) leaders, and their expression is independent of eIF4E and Pab1, Front. Microbiol., 10, 2366, doi: 10.3389/fmicb.2019.02366.

45. Dhungel, P., Cao, S., and Yang, Z. (2017) The 5′-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation, PLoS Pathog., 13, e1006602, doi: 10.1371/journal.ppat.1006602.

46. Jha, S., Rollins, M. G., Fuchs, G., Procter, D. J., Hall, E. A., et al. (2017) Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase, Nature, 546, 651-655, doi: 10.1038/nature22814.

47. Jan, E., Mohr, I., and Walsh, D. (2016) A cap-to-tail guide to mRNA translation strategies in virus-infected cells, Annu. Rev. Virol., 3, 283-307, doi: 10.1146/annurev-virology-100114-055014.

48. Linero, F., Welnowska, E., Carrasco, L., and Scolaro, L. (2013) Participation of eIF4F complex in Junin virus infection: blockage of eIF4E does not impair virus replication, Cell Microbiol., 15, 1766-1782, doi: 10.1111/cmi.12149.

49. Leen, E. N., Sorgeloos, F., Correia, S., Chaudhry, Y., Cannac, F., et al. (2016) A conserved interaction between a C-terminal motif in Norovirus VPg and the HEAT-1 domain of eIF4G is essential for translation initiation, PLoS Pathog., 12, e1005379, doi: 10.1371/journal.ppat.1005379.

50. Chung, L., Bailey, D., Leen, E. N., Emmott, E. P., Chaudhry, Y., et al. (2014) Norovirus translation requires an interaction between the C terminus of the genome-linked viral protein VPg and eukaryotic translation initiation factor 4G, J. Biol. Chem., 289, 21738-21750, doi: 10.1074/jbc.M114.550657.

51. Coutinho de Oliveira, L., Volpon, L., Rahardjo, A. K., Osborne, M. J., Culjkovic-Kraljacic, B., et al. (2019) Structural studies of the eIF4E-VPg complex reveal a direct competition for capped RNA: implications for translation, Proc. Natl. Acad. Sci. USA, 116, 24056-24065, doi: 10.1073/pnas.1904752116.

52. Khan, M. A., and Goss, D. J. (2019) Poly (A) binding protein enhances the binding affinity of potyvirus VPg to eukaryotic initiation factor eIF4F and activates in vitro translation, Int. J. Biol. Macromol., 121, 947-955, doi: 10.1016/j.ijbiomac.2018.10.135.

53. Daughenbaugh, K. F., Fraser, C. S., Hershey, J. W., and Hardy, M. E. (2003) The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment, EMBO J., 22, 2852-2859, doi: 10.1093/emboj/cdg251.

54. Hosmillo, M., Lu, J., McAllaster, M. R., Eaglesham, J. B., Wang, X., et al. (2019) Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation, Elife, 8, e46681, doi: 10.7554/eLife.46681.

55. Burroughs, J. N., and Brown, F. (1978) Presence of a covalently linked protein on calicivirus RNA, J. Gen. Virol., 41, 443-446, doi: 10.1099/0022-1317-41-2-443.

56. Mailliot, J., and Martin, F. (2018) Viral internal ribosomal entry sites: four classes for one goal, Wiley Interdiscip. Rev. RNA, 9, e1458, doi: 10.1002/wrna.1458.

57. Yamamoto, H., Unbehaun, A., and Spahn, C. M. T. (2017) Ribosomal chamber music: toward an understanding of IRES mechanisms, Trends Biochem. Sci., 42, 655-668, doi: 10.1016/j.tibs.2017.06.002.

58. Jaafar, Z. A., and Kieft, J. S. (2019) Viral RNA structure-based strategies to manipulate translation, Nat. Rev. Microbiol., 17, 110-123, doi: 10.1038/s41579-018-0117-x.

59. Arhab, Y., Bulakhov, A. G., Pestova, T. V., and Hellen, C. U. T. (2020) Dissemination of Internal Ribosomal Entry Sites (IRES) between viruses by horizontal gene transfer, Viruses, 12, 612, doi: 10.3390/v12060612.

60. Kwan, T., and Thompson, S. R. (2019) Noncanonical translation initiation in eukaryotes, Cold Spring Harb. Perspect. Biol., 11, a032672, doi: 10.1101/cshperspect.a032672.

61. Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C., and Wimmer, E. (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation, J. Virol., 62, 2636-2643, doi: 10.1128/JVI.62.8.2636-2643.1988.

62. Pelletier, J., and Sonenberg, N. (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA, Nature, 334, 320-325, doi: 10.1038/334320a0.

63. Terenin, I. M., Smirnova, V. V., Andreev, D. E., Dmitriev, S. E., and Shatsky, I. N. (2017) A researcher’s guide to the galaxy of IRESs, Cell. Mol. Life Sci., 74, 1431-1455, doi: 10.1007/s00018-016-2409-5.

64. Kozak, M. (2005) A second look at cellular mRNA sequences said to function as internal ribosome entry sites, Nucleic Acids Res., 33, 6593-6602, doi: 10.1093/nar/gki958.

65. Jackson, R. J. (2013) The current status of vertebrate cellular mRNA IRESs, Cold Spring Harb. Perspect. Biol., 5, a011569, doi: 10.1101/cshperspect.a011569.

66. Thompson, S. R. (2012) So you want to know if your message has an IRES? Wiley Interdiscip. Rev. RNA, 3, 697-705, doi: 10.1002/wrna.1129.

67. Andreev, D. E., Terenin, I. M., Dmitriev, S. E., and Shatsky, I. N. (2016) Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells, Gene, 578, 1-6, doi: 10.1016/j.gene.2015.12.008.

68. Barreau, C., Dutertre, S., Paillard, L., and Osborne, H. B. (2006) Liposome-mediated RNA transfection should be used with caution, RNA, 12, 1790-1793, doi: 10.1261/rna.191706.

69. Dmitriev, S. E., Andreev, D. E., Adyanova, Z. V., Terenin, I. M., and Shatsky, I. N. (2009) Efficient cap-dependent translation of mammalian mRNAs with long and highly structured 5′-untranslated regions in vitro and in vivo, Mol. Biol. (Mosk.), 43, 108-113, doi: 10.1134/S0026893309010154.

70. Dmitriev, S. E., Bykova, N. V., Andreev, D. E., and Terenin, I. M. (2006) Adequate system for studying translation initiation on the human retrotransposon L1 mRNA in vitro, Mol. Biol. (Mosk.), 40, 20-24, doi: 10.1134/S0026893306010043.

71. Avanzino, B. C., Jue, H., Miller, C. M., Cheung, E., Fuchs, G., and Fraser, C. S. (2018) Molecular mechanism of poliovirus Sabin vaccine strain attenuation, J. Biol. Chem., 293, 15471-15482, doi: 10.1074/jbc.RA118.004913.

72. Beckham, S. A., Matak, M. Y., Belousoff, M. J., Venugopal, H., Shah, N., et al. (2020) Structure of the PCBP2/stem-loop IV complex underlying translation initiation mediated by the poliovirus type I IRES, Nucleic Acids Res., 48, 8006-8021, doi: 10.1093/nar/gkaa519.

73. Chamond, N., Deforges, J., Ulryck, N., and Sargueil, B. (2014) 40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of type II IRESs, Nucleic Acids Res., 42, 10373-10384, doi: 10.1093/nar/gku720.

74. Kieft, J. S., Zhou, K., Jubin, R., and Doudna, J. A. (2001) Mechanism of ribosome recruitment by hepatitis C IRES RNA, RNA, 7, 194-206, doi: 10.1017/s1355838201001790.

75. Petrov, A., Grosely, R., Chen, J., O’Leary, S. E., and Puglisi, J. D. (2016) Multiple parallel pathways of translation initiation on the CrPV IRES, Mol. Cell, 62, 92-103, doi: 10.1016/j.molcel.2016.03.020.

76. Jang, C. J., and Jan, E. (2010) Modular domains of the Dicistroviridae intergenic internal ribosome entry site, RNA, 16, 1182-1195, doi: 10.1261/rna.2044610.

77. Jang, S. K., Davies, M. V., Kaufman, R. J., and Wimmer, E. (1989) Initiation of protein synthesis by internal entry of ribosomes into the 5′ nontranslated region of encephalomyocarditis virus RNA in vivo, J. Virol., 63, 1651-1660, doi: 10.1128/JVI.63.4.1651-1660.1989.

78. Pilipenko, E. V., Blinov, V. M., Romanova, L. I., Sinyakov, A. N., Maslova, S. V., and Agol, V. I. (1989) Conserved structural domains in the 5′-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence, Virology, 168, 201-209, doi: 10.1016/0042-6822(89)90259-6.

79. Skinner, M. A., Racaniello, V. R., Dunn, G., Cooper, J., Minor, P. D., and Almond, J. W. (1989) New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence, J. Mol. Biol., 207, 379-392, doi: 10.1016/0022-2836(89)90261-1.

80. Martínez-Salas, E., Francisco-Velilla, R., Fernandez-Chamorro, J., Lozano, G., and Diaz-Toledano, R. (2015) Picornavirus IRES elements: RNA structure and host protein interactions, Virus Res., 206, 62-73, doi: 10.1016/j.virusres.2015.01.012.

81. Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Svitkin, Y. V., Sinyakov, A. N., and Agol, V. I. (1992) Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA, Cell, 68, 119-131, doi: 10.1016/0092-8674(92)90211-t.

82. Slobodskaya, O. R., Gmyl, A. P., Maslova, S. V., Tolskaya, E. A., Viktorova, E. G., and Agol, V. I. (1996) Poliovirus neurovirulence correlates with the presence of a cryptic AUG upstream of the initiator codon, Virology, 221, 141-150, doi: 10.1006/viro.1996.0360.

83. Lulla, V., Dinan, A. M., Hosmillo, M., Chaudhry, Y., Sherry, L., et al. (2019) An upstream protein-coding region in enteroviruses modulates virus infection in gut epithelial cells, Nat. Microbiol., 4, 280-292, doi: 10.1038/s41564-018-0297-1.

84. Hellen, C. U., Pestova, T. V., and Wimmer, E. (1994) Effect of mutations downstream of the internal ribosome entry site on initiation of poliovirus protein synthesis, J. Virol., 68, 6312-6322, doi: 10.1128/JVI.68.10.6312-6322.1994.

85. Sweeney, T. R., Abaeva, I. S., Pestova, T. V., and Hellen, C. U. (2014) The mechanism of translation initiation on type 1 picornavirus IRESs, EMBO J., 33, 76-92, doi: 10.1002/embj.201386124.

86. Kaminski, A., Pöyry, T. A., Skene, P. J., and Jackson, R. J. (2010) Mechanism of initiation site selection promoted by the human rhinovirus 2 internal ribosome entry site, J. Virol., 84, 6578-6589, doi: 10.1128/JVI.00123-10.

87. Kafasla, P., Morgner, N., Robinson, C. V., and Jackson, R. J. (2010) Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding, EMBO J., 29, 3710-3722, doi: 10.1038/emboj.2010.231.

88. Andreev, D. E., Hirnet, J., Terenin, I. M., Dmitriev, S. E., Niepmann, M., and Shatsky, I. N. (2012) Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation, Nucleic Acids Res., 40, 5602-5614, doi: 10.1093/nar/gks182.

89. Meerovitch, K., Svitkin, Y. V., Lee, H. S., Lejbkowicz, F., Kenan, D. J., et al. (1993) La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate, J. Virol., 67, 3798-3807, doi: 10.1128/JVI.67.7.3798-3807.1993.

90. Hunt, S. L., Hsuan, J. J., Totty, N., and Jackson, R. J. (1999) unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA, Genes Dev., 13, 437-448, doi: 10.1101/gad.13.4.437.

91. Svitkin, Y. V., Pestova, T. V., Maslova, S. V., and Agol, V. I. (1988) Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains, Virology, 166, 394-404, doi: 10.1016/0042-6822(88)90510-7.

92. Agol, V. I., Drozdov, S. G., Ivannikova, T. A., Kolesnikova, M. S., Korolev, M. B., and Tolskaya, E. A. (1989) Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma, J. Virol., 63, 4034-4038, doi: 10.1128/JVI.63.9.4034-4038.1989.

93. La Monica, N., and Racaniello, V. R. (1989) Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y, J. Virol., 63, 2357-2360, doi: 10.1128/JVI.63.5.2357-2360.1989.

94. Guest, S., Pilipenko, E., Sharma, K., Chumakov, K., and Roos, R. P. (2004) Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3, J. Virol., 78, 11097-11107, doi: 10.1128/JVI.78.20.11097-11107.2004.

95. Svitkin, Y. V., Imataka, H., Khaleghpour, K., Kahvejian, A., Liebig, H. D., and Sonenberg, N. (2001) Poly(A)-binding protein interaction with elF4G stimulates picornavirus IRES-dependent translation, RNA, 7, 1743-1752.

96. White, J. P., Reineke, L. C., and Lloyd, R. E. (2011) Poliovirus switches to an eIF2-independent mode of translation during infection, J. Virol., 85, 8884-8893, doi: 10.1128/JVI.00792-11.

97. Kastan, J. P., Dobrikova, E. Y., Bryant, J. D., and Gromeier, M. (2020) CReP mediates selective translation initiation at the endoplasmic reticulum, Sci. Adv., 6, eaba0745, doi: 10.1126/sciadv.aba0745.

98. Pilipenko, E. V., Blinov, V. M., Chernov, B. K., Dmitrieva, T. M., and Agol, V. I. (1989) Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs, Nucleic Acids Res., 17, 5701-5711, doi: 10.1093/nar/17.14.5701.

99. Kolupaeva, V. G., Pestova, T. V., Hellen, C. U., and Shatsky, I. N. (1998) Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA, J. Biol. Chem., 273, 18599-18604, doi: 10.1074/jbc.273.29.18599.

100. Terenin, I. M., Andreev, D. E., Dmitriev, S. E., and Shatsky, I. N. (2013) A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent, Nucleic Acids Res., 41, 1807-1816, doi: 10.1093/nar/gks1282.

101. Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Belov, G. A., Sinyakov, A. N., et al. (1994) Starting window, a distinct element in the cap-independent internal initiation of translation on picornaviral RNA, J. Mol. Biol., 241, 398-414, doi: 10.1006/jmbi.1994.1516.

102. Kaminski, A., Howell, M. T., and Jackson, R. J. (1990) Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism, EMBO J., 9, 3753-3759, doi: 10.1002/j.1460-2075.1990.tb07588.x.

103. Pestova, T. V., Borukhov, S. I., and Hellen, C. U. (1998) Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons, Nature, 394, 854-859, doi: 10.1038/29703.

104. Andreev, D. E., Fernandez-Miragall, O., Ramajo, J., Dmitriev, S. E., Terenin, I. M., et al. (2007) Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA, RNA, 13, 1366-1374, doi: 10.1261/rna.469707.

105. Pilipenko, E. V., Pestova, T. V., Kolupaeva, V. G., Khitrina, E. V., Poperechnaya, A. N., et al. (2000) A cell cycle-dependent protein serves as a template-specific translation initiation factor, Genes Dev., 14, 2028-2045.

106. Pestova, T. V., Hellen, C. U., and Shatsky, I. N. (1996) Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry, Mol. Cell. Biol., 16, 6859-6869, doi: 10.1128/MCB.16.12.6859.

107. Kolupaeva, V. G., Hellen, C. U., and Shatsky, I. N. (1996) Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs, RNA, 2, 1199-1212.

108. Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Khitrina, E. V., and Agol, V. I. (1995) Attenuation of Theiler’s murine encephalomyelitis virus by modifications of the oligopyrimidine/AUG tandem, a host-dependent translational cis element, J. Virol., 69, 864-870, doi: 10.1128/JVI.69.2.864-870.1995.

109. Pilipenko, E. V., Viktorova, E. G., Guest, S. T., Agol, V. I., and Roos, R. P. (2001) Cell-specific proteins regulate viral RNA translation and virus-induced disease, EMBO J., 20, 6899-6908, doi: 10.1093/emboj/20.23.6899.

110. Pilipenko, E. V., Viktorova, E. G., Khitrina, E. V., Maslova, S. V., Jarousse, N., et al. (1999) Distinct attenuation phenotypes caused by mutations in the translational starting window of Theiler’s murine encephalomyelitis virus, J. Virol., 73, 3190-3196, doi: 10.1128/JVI.73.4.3190-3196.1999.

111. Gingras, A. C., Svitkin, Y., Belsham, G. J., Pause, A., and Sonenberg, N. (1996) Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus, Proc. Natl. Acad. Sci. USA, 93, 5578-5583, doi: 10.1073/pnas.93.11.5578.

112. Borman, A. M., and Kean, K. M. (1997) Intact eukaryotic initiation factor 4G is required for hepatitis A virus internal initiation of translation, Virology, 237, 129-136, doi: 10.1006/viro.1997.8761.

113. Koirala, D., Shao, Y., Koldobskaya, Y., Fuller, J. R., Watkins, A. M., et al. (2019) A conserved RNA structural motif for organizing topology within picornaviral internal ribosome entry sites, Nat. Commun., 10, 3629, doi: 10.1038/s41467-019-11585-z.

114. Avanzino, B. C., Fuchs, G., and Fraser, C. S. (2017) Cellular cap-binding protein, eIF4E, promotes picornavirus genome restructuring and translation, Proc. Natl. Acad. Sci. USA, 114, 9611-9616, doi: 10.1073/pnas.1704390114.

115. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M., and Nomoto, A. (1992) Internal ribosome entry site within hepatitis C virus RNA, J. Virol., 66, 1476-1483, doi: 10.1128/JVI.66.3.1476-1483.1992.

116. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J., and Hellen, C. U. (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs, Genes Dev., 12, 67-83, doi: 10.1101/gad.12.1.67.

117. Malygin, A. A., Kossinova, O. A., Shatsky, I. N., and Karpova, G. G. (2013) HCV IRES interacts with the 18S rRNA to activate the 40S ribosome for subsequent steps of translation initiation, Nucleic Acids Res., 41, 8706-8714, doi: 10.1093/nar/gkt632.

118. Quade, N., Boehringer, D., Leibundgut, M., van den Heuvel, J., and Ban, N. (2015) Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution, Nat. Commun., 6, 7646, doi: 10.1038/ncomms8646.

119. Yamamoto, H., Collier, M., Loerke, J., Ismer, J., Schmidt, A., et al. (2015) Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA, EMBO J., 34, 3042-3058, doi: 10.15252/embj.201592469.

120. Hashem, Y., des Georges, A., Dhote, V., Langlois, R., Liao, H. Y., et al. (2013) Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit, Nature, 503, 539-543, doi: 10.1038/nature12658.

121. Sizova, D. V., Kolupaeva, V. G., Pestova, T. V., Shatsky, I. N., and Hellen, C. U. (1998) Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs, J. Virol., 72, 4775-4782, doi: 10.1128/JVI.72.6.4775-4782.1998.

122. Jaafar, Z. A., Oguro, A., Nakamura, Y., and Kieft, J. S. (2016) Translation initiation by the hepatitis C virus IRES requires eIF1A and ribosomal complex remodeling, Elife, 5, e21198, doi: 10.7554/eLife.21198.

123. King, H. A., Cobbold, L. C., and Willis, A. E. (2010) The role of IRES trans-acting factors in regulating translation initiation, Biochem. Soc. Trans., 38, 1581-1586, doi: 10.1042/BST0381581.

124. Kim, G. W., and Siddiqui, A. (2021) N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition, Proc. Natl. Acad. Sci. USA, 118, e2022024118, doi: 10.1073/pnas.2022024118.

125. Robert, F., Kapp, L. D., Khan, S. N., Acker, M. G., Kolitz, S., et al. (2006) Initiation of protein synthesis by hepatitis C virus is refractory to reduced eIF2, GTP, Met-tRNA(i)(Met) ternary complex availability, Mol. Biol. Cell, 17, 4632-4644, doi: 10.1091/mbc.e06-06-0478.

126. Terenin, I. M., Dmitriev, S. E., Andreev, D. E., and Shatsky, I. N. (2008) Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2, Nat. Struct. Mol. Biol., 15, 836-841, doi: 10.1038/nsmb.1445.

127. Pestova, T. V., de Breyne, S., Pisarev, A. V., Abaeva, I. S., and Hellen, C. U. (2008) eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II, EMBO J., 27, 1060-1072, doi: 10.1038/emboj.2008.49.

128. Yamamoto, H., Unbehaun, A., Loerke, J., Behrmann, E., Collier, M., et al. (2014) Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA, Nat. Struct. Mol. Biol., 21, 721-727, doi: 10.1038/nsmb.2859.

129. Dmitriev, S. E., Terenin, I. M., Andreev, D. E., Ivanov, P. A., Dunaevsky, J. E., et al. (2010) GTP-independent tRNA delivery to the ribosomal P-site by a novel eukaryotic translation factor, J. Biol. Chem., 285, 26779-26787, doi: 10.1074/jbc.M110.119693.

130. Weisser, M., Schafer, T., Leibundgut, M., Bohringer, D., Aylett, C. H. S., and Ban, N. (2017) Structural and functional insights into human re-initiation complexes, Mol. Cell, 67, 447-456.e447, doi: 10.1016/j.molcel.2017.06.032.

131. González-Almela, E., Williams, H., Sanz, M. A., and Carrasco, L. (2018) The initiation factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G are not involved in translation driven by hepatitis C virus IRES in human cells, Front. Microbiol., 9, 207, doi: 10.3389/fmicb.2018.00207.

132. Young, D. J., Makeeva, D. S., Zhang, F., Anisimova, A. S., Stolboushkina, E. A., et al. (2018) Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR recycle post-termination 40S subunits in vivo, Mol. Cell, 71, 761-774.e765, doi: 10.1016/j.molcel.2018.07.028.

133. Kim, J. H., Park, S. M., Park, J. H., Keum, S. J., and Jang, S. K. (2011) eIF2A mediates translation of hepatitis C viral mRNA under stress conditions, EMBO J., 30, 2454-2464, doi: 10.1038/emboj.2011.146.

134. de Breyne, S., Yu, Y., Pestova, T. V., and Hellen, C. U. (2008) Factor requirements for translation initiation on the Simian picornavirus internal ribosomal entry site, RNA, 14, 367-380, doi: 10.1261/rna.696508.

135. Lancaster, A. M., Jan, E., and Sarnow, P. (2006) Initiation factor-independent translation mediated by the hepatitis C virus internal ribosome entry site, RNA, 12, 894-902, doi: 10.1261/rna.2342306.

136. Locker, N., Easton, L. E., and Lukavsky, P. J. (2007) HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly, EMBO J., 26, 795-805, doi: 10.1038/sj.emboj.7601549.

137. Yokoyama, T., Machida, K., Iwasaki, W., Shigeta, T., Nishimoto, M., et al. (2019) HCV IRES captures an actively translating 80S ribosome, Mol. Cell, 74, 1205-1214.e1208, doi: 10.1016/j.molcel.2019.04.022.

138. Wilson, J. E., Pestova, T. V., Hellen, C. U., and Sarnow, P. (2000) Initiation of protein synthesis from the A site of the ribosome, Cell, 102, 511-520, doi: 10.1016/s0092-8674(00)00055-6.

139. Sasaki, J., and Nakashima, N. (2000) Methionine-independent initiation of translation in the capsid protein of an insect RNA virus, Proc. Natl. Acad. Sci. USA, 97, 1512-1515, doi: 10.1073/pnas.010426997.

140. Pfingsten, J. S., Costantino, D. A., and Kieft, J. S. (2006) Structural basis for ribosome recruitment and manipulation by a viral IRES RNA, Science, 314, 1450-1454, doi: 10.1126/science.1133281.

141. Fernández, I. S., Bai, X. C., Murshudov, G., Scheres, S. H., and Ramakrishnan, V. (2014) Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome, Cell, 157, 823-831, doi: 10.1016/j.cell.2014.04.015.

142. Spahn, C. M., Jan, E., Mulder, A., Grassucci, R. A., Sarnow, P., and Frank, J. (2004) Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor, Cell, 118, 465-475, doi: 10.1016/j.cell.2004.08.001.

143. Koh, C. S., Brilot, A. F., Grigorieff, N., and Korostelev, A. A. (2014) Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center, Proc. Natl. Acad. Sci. USA, 111, 9139-9144, doi: 10.1073/pnas.1406335111.

144. Murray, J., Savva, C. G., Shin, B. S., Dever, T. E., Ramakrishnan, V., and Fernandez, I. S. (2016) Structural characterization of ribosome recruitment and translocation by type IV IRES, Elife, 5, e13567, doi: 10.7554/eLife.13567.

145. Muhs, M., Hilal, T., Mielke, T., Skabkin, M. A., Sanbonmatsu, K. Y., et al. (2015) Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES, Mol. Cell, 57, 422-432, doi: 10.1016/j.molcel.2014.12.016.

146. Pfingsten, J. S., Costantino, D. A., and Kieft, J. S. (2007) Conservation and diversity among the three-dimensional folds of the Dicistroviridae intergenic region IRESes, J. Mol. Biol., 370, 856-869, doi: 10.1016/j.jmb.2007.04.076.

147. Abaeva, I. S., Vicens, Q., Bochler, A., Soufari, H., Simonetti, A., et al. (2020) The Halastavi arva virus intergenic region IRES promotes translation by the simplest possible initiation mechanism, Cell Rep., 33, 108476, doi: 10.1016/j.celrep.2020.108476.

148. Kerr, C. H., Wang, Q. S., Moon, K. M., Keatings, K., Allan, D. W., et al. (2018) IRES-dependent ribosome repositioning directs translation of a +1 overlapping ORF that enhances viral infection, Nucleic Acids Res., 46, 11952-11967, doi: 10.1093/nar/gky1121.

149. Ren, Q., Wang, Q. S., Firth, A. E., Chan, M. M., Gouw, J. W., et al. (2012) Alternative reading frame selection mediated by a tRNA-like domain of an internal ribosome entry site, Proc. Natl. Acad. Sci. USA, 109, E630-639, doi: 10.1073/pnas.1111303109.

150. Terenin, I. M., Dmitriev, S. E., Andreev, D. E., Royall, E., Belsham, G. J., et al. (2005) A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry, Mol. Cell Biol., 25, 7879-7888, doi: 10.1128/MCB.25.17.7879-7888.2005.

151. Abaeva, I. S., Pestova, T. V., and Hellen, C. U. (2016) Attachment of ribosomal complexes and retrograde scanning during initiation on the Halastavi arva virus IRES, Nucleic Acids Res., 44, 2362-2377, doi: 10.1093/nar/gkw016.

152. Neupane, R., Pisareva, V. P., Rodriguez, C. F., Pisarev, A. V., and Fernandez, I. S. (2020) A complex IRES at the 5′-UTR of a viral mRNA assembles a functional 48S complex via an uAUG intermediate, Elife, 9, e54575, doi: 10.7554/eLife.54575.

153. Gross, L., Vicens, Q., Einhorn, E., Noireterre, A., Schaeffer, L., et al. (2017) The IRES5′UTR of the dicistrovirus cricket paralysis virus is a type III IRES containing an essential pseudoknot structure, Nucleic Acids Res., 45, 8993-9004, doi: 10.1093/nar/gkx622.

154. Majzoub, K., Hafirassou, M. L., Meignin, C., Goto, A., Marzi, S., et al. (2014) RACK1 controls IRES-mediated translation of viruses, Cell, 159, 1086-1095, doi: 10.1016/j.cell.2014.10.041.

155. Roberts, R., Mayberry, L. K., Browning, K. S., and Rakotondrafara, A. M. (2017) The Triticum Mosaic virus 5′ leader binds to both eIF4G and eIFiso4G for translation, PLoS One, 12, e0169602, doi: 10.1371/journal.pone.0169602.

156. Jaramillo-Mesa, H., Gannon, M., Holshbach, E., Zhang, J., Roberts, R., et al. (2019) The Triticum Mosaic virus internal ribosome entry site relies on a picornavirus-like YX-AUG motif to designate the preferred translation initiation site and to likely target the 18S rRNA, J. Virol., 93, e01705-18, doi: 10.1128/JVI.01705-18.

157. Castelló, A., Franco, D., Moral-López, P., Berlanga, J. J., Álvarez, E., et al. (2009) HIV-1 protease inhibits Cap- and poly(A)-dependent translation upon eIF4GI and PABP cleavage, PLoS One, 4, e7997, doi: 10.1371/journal.pone.0007997.

158. Perales, C., Carrasco, L., and Ventoso, I. (2003) Cleavage of eIF4G by HIV-1 protease: effects on translation, FEBS Lett., 533, 89-94, doi: 10.1016/s0014-5793(02)03764-x.

159. Ohlmann, T., Prévôt, D., Décimo, D., Roux, F., Garin, J., et al. (2002) In vitro cleavage of eIF4GI but not eIF4GII by HIV-1 protease and its effects on translation in the rabbit reticulocyte lysate system, J. Mol. Biol., 318, 9-20, doi: 10.1016/S0022-2836(02)00070-0.

160. Ventoso, I., Blanco, R., Perales, C., and Carrasco, L. (2001) HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation, Proc. Natl. Acad. Sci. USA, 98, 12966-12971, doi: 10.1073/pnas.231343498.

161. Buck, C. B., Shen, X., Egan, M. A., Pierson, T. C., Walker, C. M., and Siliciano, R. F. (2001) The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site, J. Virol., 75, 181-191, doi: 10.1128/JVI.75.1.181-191.2001.

162. Vallejos, M., Carvajal, F., Pino, K., Navarrete, C., Ferres, M., et al. (2012) Functional and structural analysis of the internal ribosome entry site present in the mRNA of natural variants of the HIV-1, PLoS One, 7, e35031, doi: 10.1371/journal.pone.0035031.

163. Brasey, A., Lopez-Lastra, M., Ohlmann, T., Beerens, N., Berkhout, B., et al. (2003) The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle, J. Virol., 77, 3939-3949, doi: 10.1128/jvi.77.7.3939-3949.2003.

164. Smirnova, V. V., Terenin, I. M., Khutornenko, A. A., Andreev, D. E., Dmitriev, S. E., and Shatsky, I. N. (2016) Does HIV-1 mRNA 5′-untranslated region bear an internal ribosome entry site? Biochimie, 121, 228-237, doi: 10.1016/j.biochi.2015.12.004.

165. Svitkin, Y. V., Pause, A., and Sonenberg, N. (1994) La autoantigen alleviates translational repression by the 5′ leader sequence of the human immunodeficiency virus type 1 mRNA, J. Virol., 68, 7001-7007, doi: 10.1128/JVI.68.11.7001-7007.1994.

166. Berkhout, B., Arts, K., and Abbink, T. E. (2011) Ribosomal scanning on the 5′-untranslated region of the human immunodeficiency virus RNA genome, Nucleic Acids Res., 39, 5232-5244, doi: 10.1093/nar/gkr113.

167. de Breyne, S., Chamond, N., Décimo, D., Trabaud, M. A., André, P., et al. (2012) In vitro studies reveal that different modes of initiation on HIV-1 mRNA have different levels of requirement for eukaryotic initiation factor 4F, FEBS J., 279, 3098-3111, doi: 10.1111/j.1742-4658.2012.08689.x.

168. Weill, L., James, L., Ulryck, N., Chamond, N., Herbreteau, C. H., et al. (2010) A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA, Nucleic Acids Res., 38, 1367-1381, doi: 10.1093/nar/gkp1109.

169. Herbreteau, C. H., Weill, L., Décimo, D., Prévôt, D., Darlix, J. L., et al. (2005) HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon, Nat. Struct. Mol. Biol., 12, 1001-1007, doi: 10.1038/nsmb1011.

170. Akulich, K. A., Andreev, D. E., Terenin, I. M., Smirnova, V. V., Anisimova, A. S., et al. (2016) Four translation initiation pathways employed by the leaderless mRNAin eukaryotes, Sci. Rep., 6, 37905, doi: 10.1038/srep37905.

171. Andreev, D. E., Terenin, I. M., Dunaevsky, Y. E., Dmitriev, S. E., and Shatsky, I. N. (2006) A leaderless mRNA can bind to mammalian 80S ribosomes and direct polypeptide synthesis in the absence of translation initiation factors, Mol. Cell. Biol., 26, 3164-3169, doi: 10.1128/MCB.26.8.3164-3169.2006.

172. Tahara, S. M., Dietlin, T. A., Dever, T. E., Merrick, W. C., and Worrilow, L. M. (1991) Effect of eukaryotic initiation factor 4F on AUG selection in a bicistronic mRNA, J. Biol. Chem., 266, 3594-3601.

173. Barrera, A., Olguín, V., Vera-Otarola, J., and López-Lastra, M. (2020) Cap-independent translation initiation of the unspliced RNA of retroviruses, Biochim. Biophys. Acta Gene Regul. Mech., 1863, 194583, doi: 10.1016/j.bbagrm.2020.194583.

174. Song, Y., Mugavero, J., Stauft, C. B., and Wimmer, E. (2019) Dengue and Zika virus 5′ untranslated regions harbor internal ribosomal entry site functions, mBio, 10, e00459-19, doi: 10.1128/mBio.00459-19.

175. Fernández-García, L., Angulo, J., Ramos, H., Barrera, A., Pino, K., et al. (2020) The internal ribosome entry site of the Dengue virus mRNA is active when cap-dependent translation initiation is inhibited, J. Virol., doi: 10.1128/JVI.01998-20.

176. Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., et al. (2002) Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry, Proc. Natl. Acad. Sci. USA, 99, 5301-5306, doi: 10.1073/pnas.082107599.

177. Dorokhov, Y. L., Sheshukova, E. V., and Komarova, T. V. (2017) Tobamovirus 3′-terminal Gene overlap may be a mechanism for within-host fitness improvement, Front. Microbiol., 8, 851, doi: 10.3389/fmicb.2017.00851.

178. May, J., Johnson, P., Saleem, H., and Simon, A. E. (2017) A sequence-independent, unstructured internal ribosome entry site is responsible for internal expression of the coat protein of Turnip Crinkle virus, J. Virol., 91, e02421-16, doi: 10.1128/JVI.02421-16.

179. Yuan, X., Shi, K., Meskauskas, A., and Simon, A. E. (2009) The 3′ end of Turnip crinkle virus contains a highly interactive structure including a translational enhancer that is disrupted by binding to the RNA-dependent RNA polymerase, RNA, 15, 1849-1864, doi: 10.1261/rna.1708709.

180. Treder, K., Kneller, E. L., Allen, E. M., Wang, Z., Browning, K. S., and Miller, W. A. (2008) The 3′ cap-independent translation element of Barley yellow dwarf virus binds eIF4F via the eIF4G subunit to initiate translation, RNA, 14, 134-147, doi: 10.1261/rna.777308.

181. Gazo, B. M., Murphy, P., Gatchel, J. R., and Browning, K. S. (2004) A novel interaction of Cap-binding protein complexes eukaryotic initiation factor (eIF) 4F and eIF(iso)4F with a region in the 3′-untranslated region of satellite tobacco necrosis virus, J. Biol. Chem., 279, 13584-13592, doi: 10.1074/jbc.M311361200.

182. Wang, Z., Treder, K., and Miller, W. A. (2009) Structure of a viral cap-independent translation element that functions via high affinity binding to the eIF4E subunit of eIF4F, J. Biol. Chem., 284, 14189-14202, doi: 10.1074/jbc.M808841200.

183. Nicholson, B. L., Wu, B., Chevtchenko, I., and White, K. A. (2010) Tombusvirus recruitment of host translational machinery via the 3′ UTR, RNA, 16, 1402-1419, doi: 10.1261/rna.2135210.

184. Nicholson, B. L., Zaslaver, O., Mayberry, L. K., Browning, K. S., and White, K. A. (2013) Tombusvirus Y-shaped translational enhancer forms a complex with eIF4F and can be functionally replaced by heterologous translational enhancers, J. Virol., 87, 1872-1883, doi: 10.1128/JVI.02711-12.

185. Stupina, V. A., Meskauskas, A., McCormack, J. C., Yingling, Y. G., Shapiro, B. A., et al. (2008) The 3′ proximal translational enhancer of Turnip crinkle virus binds to 60S ribosomal subunits, RNA, 14, 2379-2393, doi: 10.1261/rna.1227808.

186. Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., and Simon, A. E. (2012) A ribosome-binding, 3′ translational enhancer has a T-shaped structure and engages in a long-distance RNA–RNA interaction, J. Virol., 86, 9828-9842, doi: 10.1128/JVI.00677-12.

187. Zuo, X., Wang, J., Yu, P., Eyler, D., Xu, H., et al. (2010) Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3′ UTR of Turnip crinkle virus, Proc. Natl. Acad. Sci. USA, 107, 1385-1390, doi: 10.1073/pnas.0908140107.

188. Gao, F., Gulay, S. P., Kasprzak, W., Dinman, J. D., Shapiro, B. A., and Simon, A. E. (2013) The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5′ proximal hairpin, J. Virol., 87, 11987-12002, doi: 10.1128/JVI.02005-13.

189. Zhao, P., Liu, Q., Miller, W. A., and Goss, D. J. (2017) Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3′ cap-independent translation element (BTE), J. Biol. Chem., 292, 5921-5931, doi: 10.1074/jbc.M116.764902.

190. Wang, Z., Parisien, M., Scheets, K., and Miller, W. A. (2011) The cap-binding translation initiation factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element, Structure, 19, 868-880, doi: 10.1016/j.str.2011.03.013.

191. Du, Z., Alekhina, O. M., Vassilenko, K. S., and Simon, A. E. (2017) Concerted action of two 3′ cap-independent translation enhancers increases the competitive strength of translated viral genomes, Nucleic Acids Res., 45, 9558-9572, doi: 10.1093/nar/gkx643.

192. Sharma, G., Stupina, V., Pallesen, J., Shapiro, B., Simon, A., Dinman, J., and Frank, J. (2012) Cryo-electron microscopy (Cryo-EM) structure of a cap-independent translational enhancer of the Turnip crinkle virus (TCV) bound to the eukaryotic ribosome, Biophys. J., 102, 393A, doi: 10.1016/j.bpj.2011.11.2147.

193. Miras, M., Sempere, R. N., Kraft, J. J., Miller, W. A., Aranda, M. A., and Truniger, V. (2014) Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking, New Phytol., 202, 233-246, doi: 10.1111/nph.12650.

194. Guo, L., Allen, E. M., and Miller, W. A. (2001) Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA, Mol. Cell, 7, 1103-1109, doi: 10.1016/s1097-2765(01)00252-0.

195. Gao, F., Alekhina, O. M., Vassilenko, K. S., and Simon, A. E. (2018) Unusual dicistronic expression from closely spaced initiation codons in an umbravirus subgenomic RNA, Nucleic Acids Res., 46, 11726-11742, doi: 10.1093/nar/gky871.

196. Rakotondrafara, A. M., Polacek, C., Harris, E., and Miller, W. A. (2006) Oscillating kissing stem-loop interactions mediate 5′ scanning-dependent translation by a viral 3′-cap-independent translation element, RNA, 12, 1893-1906, doi: 10.1261/rna.115606.

197. Fabian, M. R., and White, K. A. (2006) Analysis of a 3′-translation enhancer in a tombusvirus: a dynamic model for RNA-RNA interactions of mRNA termini, RNA, 12, 1304-1314, doi: 10.1261/rna.69506.

198. Sarawaneeyaruk, S., Iwakawa, H. O., Mizumoto, H., Murakami, H., Kaido, M., et al. (2009) Host-dependent roles of the viral 5′ untranslated region (UTR) in RNA stabilization and cap-independent translational enhancement mediated by the 3′ UTR of Red clover necrotic mosaic virus RNA1, Virology, 391, 107-118, doi: 10.1016/j.virol.2009.05.037.

199. Karetnikov, A., and Lehto, K. (2008) Translation mechanisms involving long-distance base pairing interactions between the 5′ and 3′ non-translated regions and internal ribosomal entry are conserved for both genomic RNAs of Blackcurrant reversion nepovirus, Virology, 371, 292-308, doi: 10.1016/j.virol.2007.10.003.

200. Sharma, S. D., Kraft, J. J., Miller, W. A., and Goss, D. J. (2015) Recruitment of the 40S ribosome subunit to the 3′-untranslated region (UTR) of a viral mRNA, via the eIF4 complex, facilitates cap-independent translation, J. Biol. Chem., 290, 11268-11281, doi: 10.1074/jbc.M115.645002.

201. Stupina, V. A., Yuan, X., Meskauskas, A., Dinman, J. D., and Simon, A. E. (2011) Ribosome binding to a 5′ translational enhancer is altered in the presence of the 3′ untranslated region in cap-independent translation of turnip crinkle virus, J. Virol., 85, 4638-4653, doi: 10.1128/JVI.00005-11.

202. Yoshii, M., Nishikiori, M., Tomita, K., Yoshioka, N., Kozuka, R., et al. (2004) The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G, J. Virol., 78, 6102-6111, doi: 10.1128/JVI.78.12.6102-6111.2004.

203. Gao, F., and Simon, A. E. (2016) Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus, Nucleic Acids Res., 44, 878-895, doi: 10.1093/nar/gkv1241.

204. Matsuda, D., and Dreher, T. W. (2004) The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3′-translational enhancer, Virology, 321, 36-46, doi: 10.1016/j.virol.2003.10.023.

205. Colussi, T. M., Costantino, D. A., Hammond, J. A., Ruehle, G. M., Nix, J. C., and Kieft, J. S. (2014) The structural basis of transfer RNA mimicry and conformational plasticity by a viral RNA, Nature, 511, 366-369, doi: 10.1038/nature13378.

206. Haenni, A. L., Joshi, S., and Chapeville, F. (1982) tRNA-like structures in the genomes of RNA viruses, Prog. Nucleic Acid Res. Mol. Biol., 27, 85-104, doi: 10.1016/s0079-6603(08)60598-x.

207. Barends, S., Bink, H. H., van den Worm, S. H., Pleij, C. W., and Kraal, B. (2003) Entrapping ribosomes for viral translation: tRNA mimicry as a molecular Trojan horse, Cell, 112, 123-129, doi: 10.1016/s0092-8674(02)01256-4.

208. Matsuda, D., and Dreher, T. W. (2007) Cap- and initiator tRNA-dependent initiation of TYMV polyprotein synthesis by ribosomes: evaluation of the Trojan horse model for TYMV RNA translation, RNA, 13, 129-137, doi: 10.1261/rna.244407.

209. Gallie, D. R., and Kobayashi, M. (1994) The role of the 3′-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency, Gene, 142, 159-165, doi: 10.1016/0378-1119(94)90256-9.

210. Barends, S., Rudinger-Thirion, J., Florentz, C., Giegé, R., Pleij, C. W., and Kraal, B. (2004) tRNA-like structure regulates translation of Brome mosaic virus RNA, J. Virol., 78, 4003-4010, doi: 10.1128/jvi.78.8.4003-4010.2004.

211. Leathers, V., Tanguay, R., Kobayashi, M., and Gallie, D. R. (1993) A phylogenetically conserved sequence within viral 3′ untranslated RNA pseudoknots regulates translation, Mol. Cell. Biol., 13, 5331-5347, doi: 10.1128/mcb.13.9.5331-5347.1993.

212. Matsuda, D., Dunoyer, P., Hemmer, O., Fritsch, C., and Dreher, T. W. (2000) The valine anticodon and valylatability of Peanut clump virus RNAs are not essential but provide a modest competitive advantage in plants, J. Virol., 74, 8720-8725, doi: 10.1128/jvi.74.18.8720-8725.2000.

213. Gordon, K. H., Johnson, K. N., and Hanzlik, T. N. (1995) The larger genomic RNA of Helicoverpa armigera stunt tetravirus encodes the viral RNA polymerase and has a novel 3′-terminal tRNA-like structure, Virology, 208, 84-98, doi: 10.1006/viro.1995.1132.

214. Sherlock, M. E., Hartwick, E. W., MacFadden, A., and Kieft, J. S. (2021) Structural diversity and phylogenetic distribution of valyl tRNA-like structures in viruses, RNA, 27, 27-39, doi: 10.1261/rna.076968.120.

215. Poncet, D., Laurent, S., and Cohen, J. (1994) Four nucleo-tides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3, EMBO J., 13, 4165-4173.

216. Groft, C. M., and Burley, S. K. (2002) Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization, Mol. Cell, 9, 1273-1283, doi: 10.1016/s1097-2765(02)00555-5.

217. Vende, P., Piron, M., Castagné, N., and Poncet, D. (2000) Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end, J. Virol., 74, 7064-7071, doi: 10.1128/jvi.74.15.7064-7071.2000.

218. Olsthoorn, R. C., Mertens, S., Brederode, F. T., and Bol, J. F. (1999) A conformational switch at the 3′ end of a plant virus RNA regulates viral replication, EMBO J., 18, 4856-4864, doi: 10.1093/emboj/18.17.4856.

219. Chen, S. C., and Olsthoorn, R. C. (2010) In vitro and in vivo studies of the RNA conformational switch in Alfalfa mosaic virus, J. Virol., 84, 1423-1429, doi: 10.1128/JVI.01443-09.

220. Krab, I. M., Caldwell, C., Gallie, D. R., and Bol, J. F. (2005) Coat protein enhances translational efficiency of Alfalfa mosaic virus RNAs and interacts with the eIF4G component of initiation factor eIF4F, J. Gen. Virol., 86, 1841-1849, doi: 10.1099/vir.0.80796-0.

221. Holden, K. L., and Harris, E. (2004) Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain, Virology, 329, 119-133, doi: 10.1016/j.virol.2004.08.004.

222. Bung, C., Bochkaeva, Z., Terenin, I., Zinovkin, R., Shatsky, I. N., and Niepmann, M. (2010) Influence of the hepatitis C virus 3′-untranslated region on IRES-dependent and cap-dependent translation initiation, FEBS Lett., 584, 837-842, doi: 10.1016/j.febslet.2010.01.015.

223. Gunišová, S., Hronová, V., Mohammad, M. P., Hinnebusch, A. G., and Valášek, L. S. (2018) Please do not recycle! Translation reinitiation in microbes and higher eukaryotes, FEMS Microbiol. Rev., 42, 165-192, doi: 10.1093/femsre/fux059.

224. Powell, M. L. (2010) Translational termination-reinitiation in RNA viruses, Biochem. Soc. Trans., 38, 1558-1564, doi: 10.1042/BST0381558.

225. Pöyry, T. A., Kaminski, A., Connell, E. J., Fraser, C. S., and Jackson, R. J. (2007) The mechanism of an exceptional case of reinitiation after translation of a long ORF reveals why such events do not generally occur in mammalian mRNA translation, Genes Dev., 21, 3149-3162, doi: 10.1101/gad.439507.

226. Meyers, G. (2007) Characterization of the sequence element directing translation reinitiation in RNA of the calicivirus rabbit hemorrhagic disease virus, J. Virol., 81, 9623-9632, doi: 10.1128/JVI.00771-07.

227. Meyers, G. (2003) Translation of the minor capsid protein of a calicivirus is initiated by a novel termination-dependent reinitiation mechanism, J. Biol. Chem., 278, 34051-34060, doi: 10.1074/jbc.M304874200.

228. Wennesz, R., Luttermann, C., Kreher, F., and Meyers, G. (2019) Structure-function relationship in the “termination upstream ribosomal binding site” of the calicivirus rabbit hemorrhagic disease virus, Nucleic Acids Res., 47, 1920-1934, doi: 10.1093/nar/gkz021.

229. Luttermann, C., and Meyers, G. (2009) The importance of inter- and intramolecular base pairing for translation reinitiation on a eukaryotic bicistronic mRNA, Genes Dev., 23, 331-344, doi: 10.1101/gad.507609.

230. Zinoviev, A., Hellen, C. U. T., and Pestova, T. V. (2015) Multiple mechanisms of reinitiation on bicistronic calicivirus mRNAs, Mol. Cell, 57, 1059-1073, doi: 10.1016/j.molcel.2015.01.039.

231. Powell, M. L., Leigh, K. E., Poyry, T. A., Jackson, R. J., Brown, T. D., and Brierley, I. (2011) Further characterisation of the translational termination-reinitiation signal of the influenza B virus segment 7 RNA, PLoS One, 6, e16822, doi: 10.1371/journal.pone.0016822.

232. Powell, M. L., Napthine, S., Jackson, R. J., Brierley, I., and Brown, T. D. (2008) Characterization of the termination-reinitiation strategy employed in the expression of influenza B virus BM2 protein, RNA, 14, 2394-2406, doi: 10.1261/rna.1231008.

233. Abaeva, I. S., Marintchev, A., Pisareva, V. P., Hellen, C. U., and Pestova, T. V. (2011) Bypassing of stems versus linear base-by-base inspection of mammalian mRNAs during ribosomal scanning, EMBO J., 30, 115-129, doi: 10.1038/emboj.2010.302.

234. Schepetilnikov, M., Kobayashi, K., Geldreich, A., Caranta, C., Robaglia, C., et al. (2011) Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation, EMBO J., 30, 1343-1356, doi: 10.1038/emboj.2011.39.

235. Schepetilnikov, M., and Ryabova, L. A. (2018) Recent discoveries on the role of TOR (Target of rapamycin) signaling in translation in plants, Plant Physiol., 176, 1095-1105, doi: 10.1104/pp.17.01243.

236. Thiébeauld, O., Schepetilnikov, M., Park, H. S., Geldreich, A., Kobayashi, K., et al. (2009) A new plant protein interacts with eIF3 and 60S to enhance virus-activated translation re-initiation, EMBO J., 28, 3171-3184, doi: 10.1038/emboj.2009.256.

237. Mancera-Martínez, E., Dong, Y., Makarian, J., Srour, O., Thiébeauld, O., et al. (2021) Phosphorylation of a reinitiation supporting protein, RISP, determines its function in translation reinitiation, Nucleic Acids Res., 49, 6908-6924, doi: 10.1093/nar/gkab501.

238. Skabkin, M. A., Skabkina, O. V., Hellen, C. U., and Pestova, T. V. (2013) Reinitiation and other unconventional posttermination events during eukaryotic translation, Mol. Cell, 51, 249-264, doi: 10.1016/j.molcel.2013.05.026.

239. Young, D. J., Guydosh, N. R., Zhang, F., Hinnebusch, A. G., and Green, R. (2015) Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′-UTRs in vivo, Cell, 162, 872-884, doi: 10.1016/j.cell.2015.07.041.

240. Brown, J. D., and Ryan, M. D. (2010) Ribosome “Skipping”: “Stop-Carry On” or “StopGo” Translation. in Recoding: Expansion of Decoding Rules Enriches Gene Expression (Atkins, J. F., and Gesteland, R. F., eds.) Springer New York, New York, NY, pp. 101-121.

241. Liu, Z., Chen, O., Wall, J. B. J., Zheng, M., Zhou, Y., et al. (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector, Sci. Rep., 7, 2193, doi: 10.1038/s41598-017-02460-2.

242. Pamudurti, N. R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., et al. (2017) Translation of CircRNAs, Mol. Cell, 66, 9-21.e27, doi: 10.1016/j.molcel.2017.02.021.

243. Tagawa, T., Kopardé, V. N., and Ziegelbauer, J. M. (2021) Identifying and characterizing virus-encoded circular RNAs, Methods, doi: 10.1016/j.ymeth.2021.03.004.

244. Zhao, J., Lee, E. E., Kim, J., Yang, R., Chamseddin, B., et al. (2019) Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus, Nat. Commun., 10, 2300, doi: 10.1038/s41467-019-10246-5.

245. Tan, K. E., and Lim, Y. Y. (2020) Viruses join the circular RNA world, FEBS J., doi: 10.1111/febs.15639.

246. AbouHaidar, M. G., Venkataraman, S., Golshani, A., Liu, B., and Ahmad, T. (2014) Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt, Proc. Natl. Acad. Sci. USA, 111, 14542-14547, doi: 10.1073/pnas.1402814111.

247. Thoms, M., Buschauer, R., Ameismeier, M., Koepke, L., Denk, T., et al. (2020) Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2, Science, 369, 1249-1255, doi: 10.1126/science.abc8665.

248. Yuan, S., Peng, L., Park, J. J., Hu, Y., Devarkar, S. C., et al. (2020) Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA, Mol. Cell, 80, 1055-1066.e1056, doi: 10.1016/j.molcel.2020.10.034.

249. Schubert, K., Karousis, E. D., Jomaa, A., Scaiola, A., Echeverria, B., et al. (2020) SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation, Nat. Struct. Mol. Biol., 27, 959-966, doi: 10.1038/s41594-020-0511-8.

250. Vankadari, N., Jeyasankar, N. N., and Lopes, W. J. (2020) Structure of the SARS-CoV-2 Nsp1/5′-untranslated region complex and implications for potential therapeutic targets, a vaccine, and virulence, J. Phys. Chem. Lett., 11, 9659-9668, doi: 10.1021/acs.jpclett.0c02818.

251. Tidu, A., Janvier, A., Schaeffer, L., Sosnowski, P., Kuhn, L., et al. (2020) The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation, RNA, doi: 10.1261/rna.078121.120.

252. Shi, M., Wang, L., Fontana, P., Vora, S., Zhang, Y., et al. (2020) SARS-CoV-2 Nsp1 suppresses host but not viral translation through a bipartite mechanism, bioRxiv, doi: 10.1101/2020.09.18.302901.

253. Lapointe, C. P., Grosely, R., Johnson, A. G., Wang, J., Fernandez, I. S., and Puglisi, J. D. (2021) Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation, Proc. Natl. Acad. Sci. USA, 118, e2017715118, doi: 10.1073/pnas.2017715118.

254. Huang, C., Lokugamage, K. G., Rozovics, J. M., Narayanan, K., Semler, B. L., and Makino, S. (2011) SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage, PLoS Pathog., 7, e1002433, doi: 10.1371/journal.ppat.1002433.

255. Walsh, D., and Mohr, I. (2011) Viral subversion of the host protein synthesis machinery, Nat. Rev. Microbiol., 9, 860-875, doi: 10.1038/nrmicro2655.

256. Cantu, F., Cao, S., Hernandez, C., Dhungel, P., Spradlin, J., and Yang, Z. (2020) Poxvirus-encoded decapping enzymes promote selective translation of viral mRNAs, PLoS Pathog., 16, e1008926, doi: 10.1371/journal.ppat.1008926.

257. Decroly, E., Ferron, F., Lescar, J., and Canard, B. (2011) Conventional and unconventional mechanisms for capping viral mRNA, Nat. Rev. Microbiol., 10, 51-65, doi: 10.1038/nrmicro2675.

258. Lashkevich, K. A., and Dmitriev, S. E. (2021) mRNA targeting, transport and local translation in eukaryotic cells: from the classical view to a diversity of new concepts, Mol. Biol., doi: 10.1134/S0026893321030080.

259. Romero-Brey, I., and Bartenschlager, R. (2014) Membranous replication factories induced by plus-strand RNA viruses, Viruses, 6, 2826-2857, doi: 10.3390/v6072826.

260. Reineke, L. C., and Lloyd, R. E. (2013) Diversion of stress granules and P-bodies during viral infection, Virology, 436, 255-267, doi: 10.1016/j.virol.2012.11.017.

261. McCormick, C., and Khaperskyy, D. A. (2017) Translation inhibition and stress granules in the antiviral immune response, Nat. Rev. Immunol., 17, 647-660, doi: 10.1038/nri.2017.63.

262. Dzananovic, E., McKenna, S. A., and Patel, T. R. (2018) Viral proteins targeting host protein kinase R to evade an innate immune response: a mini review, Biotechnol. Genet. Eng. Rev., 34, 33-59, doi: 10.1080/02648725.2018.1467151.

263. Alonso, M. A., and Carrasco, L. (1981) Reversion by hypotonic medium of the shutoff of protein synthesis induced by encephalomyocarditis virus, J. Virol., 37, 535-540, doi: 10.1128/JVI.37.2.535-540.1981.

264. Nair, C. N. (1981) Monovalent cation metabolism and cytopathic effects of poliovirus-infected HeLa cells, J. Virol., 37, 268-273, doi: 10.1128/JVI.37.1.268-273.1981.

265. Dmitriev, S. E., Vladimirov, D. O., and Lashkevich, K. A. (2020) A quick guide to small-molecule inhibitors of eukaryotic protein synthesis, Biochemistry (Moscow), 85, 1389-1421, doi: 10.1134/S0006297920110097.