БИОХИМИЯ, 2020, том 85, вып. 12, с. 1750–1765

УДК 577.22

Митоптоз, двадцать лет спустя

Обзор

© 2020 К.Г. Лямзаев 1, Д.А. Кнорре 1,2, Б.В. Черняк 1*

НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия; электронная почта: bchernyak1@gmail.com

Первый московский государственный медицинский университет имени И.М. Сеченова, 119992 Москва, Россия

Поступила в редакцию 08.07.2020
После доработки 14.08.2020
Принята к публикации 14.08.2020

DOI: 10.31857/S0320972520120027

КЛЮЧЕВЫЕ СЛОВА: митохондрии, митоптоз, митофагия, мембранный потенциал, апоптоз, воспаление, дифференцировка, асимметричное наследование митохондрий.

Аннотация

Термин «митоптоз» был предложен В.П. Скулачевым в 1999 г. для обозначения программированной элиминации митохондрий в живой клетке. В модели массированного повреждения митохондрий, связанного с окислительным стрессом, был обнаружен новый механизм полной элиминации митохондрий, который включал кластерообразование в перинуклеарной области, формирование «митоптозного тельца», окруженного однослойной мембраной, и последующий выброс митохондрий из клетки. Выяснилось, что митоптоз играет важную роль в процессах дифференцировки клеток, включая терминальную дифференцировку, в самоподдержании гематопоэтических стволовых клеток, а также в метаболической перестройке. К митоптозу можно отнести элиминацию отцовских митохондрий при материнском наследовании митохондриального генома, а также асимметричное наследование митохондрий при делении дрожжей и некоторых клеток животных. Наконец, особой формой митоптоза является селективная элиминация митохондрий с вредными мутациями в составе целых фолликулярных клеток яичников млекопитающих. Дальнейшее изучение механизмов митоптоза в норме и при патологиях важно как для понимания процессов развития и старения, так и для разработки терапевтических подходов при воспалительных, нейродегенеративных и других заболеваниях.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при финансовой поддержке Российского научного фонда (грант 17-14-01314-П), а также при поддержке Междисциплинарной научно-образовательной школы Московского университета «Молекулярные технологии живых систем и синтетическая биология».

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания каких-либо исследований с участием людей или животных в качестве объектов.

Список литературы

1. Skulachev, V. P. (1999) Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms, Mol. Aspects Med., 20, 139-184, doi: 10.1016/s0098-2997(99)00008-4.

2. Skulachev, V. P. (1999) Phenoptosis: programmed death of an organism, Biochemistry (Moscow), 64, 1418-1426.

3. Skulachev, V. P. (2000) Mitochondria in the programmed death phenomena; a principle of biology: “it is better to die than to be wrong”, IUBMB Life, 49, 365-373, doi: 10.1080/152165400410209.

4. Skulachev, V. P. (2001) The programmed death phenomena, aging, and the samurai law of biology, Exp. Gerontol., 36, 995-1024, doi: 10.1016/s0531-5565(01)00109-7.

5. Von Ahsen, O., Renken, C., Perkins, G., Kluck, R. M., Bossy-Wetzel, E., and Newmeyer, D. D. (2000) Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release, J. Cell Biol., 150, 1027-1030, doi: 10.1083/jcb.150.5.1027.

6. Garcia Fernandez, M., Troiano, L., Moretti, L., Nasi, M., Pinti, M., Salvioli, S., et al. (2002) Early changes in intramitochondrial cardiolipin distribution during apoptosis, Cell Growth Differ., 13, 449-455.

7. Bota, D. A., Ngo, J. K., and Davies, K. J. A. (2005) Down-regulation of the human Lon protease impairs mitochondrial structure and function and causes cell death, Free Radic. Biol. Med., 38, 665-677, doi: 10.1016/j.freeradbiomed.2004.11.017.

8. Rose, G., Passarino, G., Franceschi, C., and De Benedictis, G. (2002) The variability of the mitochondrial genome in human aging: a key for life and death? Int. J. Biochem. Cell Biol., 34, 1449-1460, doi: 10.1016/s1357-2725(02)00042-0.

9. Tinari, A., Garofalo, T., Sorice, M., Esposti, M. D., and Malorni, W. (2007) Mitoptosis: different pathways for mitochondrial execution, Autophagy, 3, 282-284, doi: 10.4161/auto.3924.

10. Géminard, C., de Gassart, A., and Vidal, M. (2002) Reticulocyte maturation: mitoptosis and exosome release, Biocell, 26, 205-215.

11. Lyamzaev, K. G., Pletjushkina, O. Y., Saprunova, V. B., Bakeeva, L. E., Chernyak, B. V., and Skulachev, V. P. (2004) Selective elimination of mitochondria from living cells induced by inhibitors of bioenergetic functions, Biochem. Soc. Trans., 32, 1070-1071, doi: 10.1042/BST0321070.

12. Lyamzaev, K. G., Nepryakhina, O. K., Saprunova, V. B., Bakeeva, L. E., Pletjushkina, O. Y., et al. (2008) Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell, Biochim. Biophys. Acta, 1777, 817-825, doi: 10.1016/j.bbabio.2008.03.027.

13. Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., et al. (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 256-257, 341-358, doi: 10.1023/b:mcbi.0000009880.94044.49.

14. Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., et al. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518-524, doi: 10.1016/j.bbabio.2006.03.018.

15. Arnoult, D., Rismanchi, N., Grodet, A., Roberts, R. G., Seeburg, D. P., et al. (2005) Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death, Curr. Biol., 15, 2112-2118, doi: 10.1016/j.cub.2005.10.041.

16. Ishihara, N., Nomura, M., Jofuku, A., Kato, H., Suzuki, S. O., Masuda, K., et al. (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice, Nat. Cell Biol., 11, 958-966, doi: 10.1038/ncb1907.

17. Burman, J. L., Pickles, S., Wang, C., Sekine, S., Vargas, J. N. S., et al. (2017) Mitochondrial fission facilitates the selective mitophagy of protein aggregates, J. Cell. Biol., 216, 3231-3247, doi: 10.1083/jcb.201612106.

18. Quirós, P. M., Langer, T., and López-Otín, C. (2015) New roles for mitochondrial proteases in health, ageing and disease, Nat. Rev. Mol. Cell. Biol., 16, 345-359, doi: 10.1038/nrm3984.

19. Palikaras, K., Lionaki, E., and Tavernarakis, N. (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology, Nat. Cell. Biol., 20, 1013-1022, doi: 10.1038/s41556-018-0176-2.

20. Bock, F. J., and Tait, S. W. G. (2020) Mitochondria as multifaceted regulators of cell death, Nat. Rev. Mol. Cell Biol., 21, 85-100, doi: 10.1038/s41580-019-0173-8.

21. Tolstonog, G. V., Belichenko-Weitzmann, I. V., Lu, J.-P., Hartig, R., Shoeman, R. L., Traub, U., et al. (2005) Spontaneously immortalized mouse embryo fibroblasts: growth behavior of wild-type and vimentin-deficient cells in relation to mitochondrial structure and activity, DNA Cell. Biol., 24, 680-709, doi: 10.1089/dna.2005.24.680.

22. Kopito, R. R. (2000) Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol., 10, 524-530, doi: 10.1016/s0962-8924(00)01852-3.

23. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., et al. (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria, Cell, 93, 1147-1158, doi: 10.1016/s0092-8674(00)81459-2.

24. Hallmann, A., Milczarek, R., Lipiński, M., Kossowska, E., Spodnik, J. H., et al. (2004) Fast perinuclear clustering of mitochondria in oxidatively stressed human choriocarcinoma cells, Folia Morphol., 63, 407-412.

25. Agarwal, S., and Ganesh, S. (2020) Perinuclear mitochondrial clustering, increased ROS levels, and HIF1 are required for the activation of HSF1 by heat stress, J. Cell. Sci., doi: 10.1242/jcs.245589.

26. Kim, S., Kim, H.-Y., Lee, S., Kim, S. W., Sohn, S., Kim, K., et al. (2007) Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners, J. Virol., 81, 1714-1726, doi: 10.1128/JVI.01863-06.

27. Lyamzaev, K. G., Tokarchuk, A. V., Panteleeva, A. A., Mulkidjanian, A. Y., Skulachev, V. P., and Chernyak, B. V. (2018) Induction of autophagy by depolarization of mitochondria, Autophagy, 14, 921-924, doi: 10.1080/15548627.2018.1436937.

28. Lee, H.-J., Patel, S., and Lee, S.-J. (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates, J. Neurosci., 25, 6016-6024, doi: 10.1523/JNEUROSCI.0692-05.2005.

29. Lee, H.-J., Cho, E.-D., Lee, K. W., Kim, J.-H., Cho, S.-G., and Lee, S.-J. (2013) Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein, Exp. Mol. Med., 45, 22, doi: 10.1038/emm.2013.45.

30. Izyumov, D. S., Avetisyan, A. V., Pletjushkina, O. Y., Sakharov, D. V., Wirtz, K. W., et al. (2004) “Wages of fear”: transient threefold decrease in intracellular ATP level imposes apoptosis, Biochim. Biophys. Acta, 1658, 141-147, doi: 10.1016/j.bbabio.2004.05.007.

31. Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., et al. (2010) Regulation of mammalian autophagy in physiology and pathophysiology, Physiol. Rev., 90, 1383-1435, doi: 10.1152/physrev.00030.2009.

32. Melentijevic, I., Toth, M. L., Arnold, M. L., Guasp, R. J., Harinath, G., et al. (2017) C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress, Nature, 542, 367-371, doi: 10.1038/nature21362.

33. Bisharyan, Y., and Clark, T. G. (2011) Calcium-dependent mitochondrial extrusion in ciliated protozoa, Mitochondrion, 11, 909-918, doi: 10.1016/j.mito.2011.08.001.

34. Fletcher, G. C., Xue, L., Passingham, S. K., and Tolkovsky, A. M. (2000) Death commitment point is advanced by axotomy in sympathetic neurons, J. Cell. Biol., 150, 741-754, doi: 10.1083/jcb.150.4.741.

35. Xue, L., Fletcher, G. C., and Tolkovsky, A. M. (2001) Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis, Curr. Biol., 11, 361-365, doi: 10.1016/s0960-9822(01)00100-2.

36. Tolkovsky, A. M., Xue, L., Fletcher, G. C., and Borutaite, V. (2002) Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie, 84, 233-240, doi: 10.1016/s0300-9084(02)01371-8.

37. Chao, H., Lin, C., Zuo, Q., Liu, Y., Xiao, M., et al. (2019) Cardiolipin-dependent mitophagy guides outcome after traumatic brain injury, J. Neurosci., 39, 1930-1943, doi: 10.1523/JNEUROSCI.3415-17.2018.

38. Chu, C. T., Ji, J., Dagda, R. K., Jiang, J. F., Tyurina, Y. Y., et al. (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells, Nat. Cell. Biol., 15, 1197-1205, doi: 10.1038/ncb2837.

39. Wang, C., Hu, Z., Zou, Y., Xiang, M., Jiang, Y., et al. (2017) The post-therapeutic effect of rapamycin in mild traumatic brain-injured rats ensuing in the upregulation of autophagy and mitophagy, Cell. Biol. Int., 41, 1039-1047, doi: 10.1002/cbin.10820.

40. Lou, G., Palikaras, K., Lautrup, S., Scheibye-Knudsen, M., Tavernarakis, N., and Fang, E. F. (2020) Mitophagy and neuroprotection, Trends Mol. Med., 26, 8-20, doi: 10.1016/j.molmed.2019.07.002.

41. Ebneth, A., Godemann, R., Stamer, K., Illenberger, S., Trinczek, B., and Mandelkow, E. (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease, J. Cell. Biol., 143, 777-794, doi: 10.1083/jcb.143.3.777.

42. Lood, C., Blanco, L. P., Purmalek, M. M., Carmona-Rivera, C., De Ravin, S. S., et al. (2016) Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease, Nat. Med., 22, 146-153, doi: 10.1038/nm.4027.

43. Nakajima, A., Kurihara, H., Yagita, H., Okumura, K., and Nakano, H. (2008) Mitochondrial extrusion through the cytoplasmic vacuoles during cell death, J. Biol. Chem., 283, 24128-24135, doi: 10.1074/jbc.M802996200.

44. Unuma, K., Aki, T., Matsuda, S., Funakoshi, T., Yoshida, K.-I., and Uemura, K. (2013) Elimination and active extrusion of liver mitochondrial proteins during lipopolysaccharide administration in rat, Hepatol. Res., 43, 526-534, doi: 10.1111/j.1872-034X.2012.01084.x.

45. Unuma, K., Aki, T., Funakoshi, T., Hashimoto, K., and Uemura, K. (2015) Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: involvement of autophagy, Autophagy, 11, 1520-1536, doi: 10.1080/15548627.2015.1063765.

46. Ouasti, S., Matarrese, P., Paddon, R., Khosravi-Far, R., Sorice, M., et al. (2007) Death receptor ligation triggers membrane scrambling between Golgi and mitochondria, Cell Death Differ., 14, 453-461, doi: 10.1038/sj.cdd.4402043.

47. Ingelsson, B., Söderberg, D., Strid, T., Söderberg, A., Bergh, A.-C., et al. (2018) Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C, Proc. Natl. Acad. Sci. USA, 115, 478-487, doi: 10.1073/pnas.1711950115.

48. De Paoli, S. H., Tegegn, T. Z., Elhelu, O. K., Strader, M. B., Patel, M., et al. (2018) Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome, Cell Mol. Life Sci., 75, 3781-3801, doi: 10.1007/s00018-018-2771-6.

49. Boudreau, L. H., Duchez, A.-C., Cloutier, N., Soulet, D., Martin, N., et al. (2014) Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation, Blood, 124, 2173-2183, doi: 10.1182/blood-2014-05-573543.

50. Linge, P., Fortin, P. R., Lood, C., Bengtsson, A. A., and Boilard, E. (2018) The non-haemostatic role of platelets in systemic lupus erythematosus, Nat. Rev. Rheumatol., 14, 195-213, doi: 10.1038/nrrheum.2018.38.

51. Puhm, F., Afonyushkin, T., Resch, U., Obermayer, G., Rohde, M., et al. (2019) Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells, Circ. Res., 125, 43-52, doi: 10.1161/CIRCRESAHA.118.314601.

52. Baruah, J., and Wary, K. K. (2019) Exosomes in the regulation of vascular endothelial cell regeneration, Front. Cell Dev. Biol., 7, 353, doi: 10.3389/fcell.2019.00353.

53. Zhang, B., Asadi, S., Weng, Z., Sismanopoulos, N., and Theoharides, T. C. (2012) Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions, PLoS One, 7, e49767, doi: 10.1371/journal.pone.0049767.

54. Torralba, D., Baixauli, F., Villarroya-Beltri, C., Fernández-Delgado, I., Latorre-Pellicer, A., et al. (2018) Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts, Nat. Commun., 9, 2658, doi: 10.1038/s41467-018-05077-9.

55. Torralba, D., Baixauli, F., and Sánchez-Madrid, F. (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer, Front. Cell Dev. Biol., 4, 107, doi: 10.3389/fcell.2016.00107.

56. Yousefi, S., Simon, D., Stojkov, D., Karsonova, A., Karaulov, A., and Simon, H.-U. (2020) In vivo evidence for extracellular DNA trap formation, Cell Death Dis, 11, 300, doi: 10.1038/s41419-020-2497-x.

57. Kambara, H., Liu, F., Zhang, X., Liu, P., Bajrami, B., et al. (2018) Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death, Cell Rep., 22, 2924-2936, doi: 10.1016/j.celrep.2018.02.067.

58. Vorobjeva, N., Galkin, I., Pletjushkina, O., Golyshev, S., Zinovkin, R., et al. (2020) Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils, Biochim. Biophys. Acta Mol. Basis Dis., 1866, 165664, doi: 10.1016/j.bbadis.2020.165664.

59. Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., et al. (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood, Nat. Med., 13, 463-469, doi: 10.1038/nm1565.

60. Yipp, B. G., Petri, B., Salina, D., Jenne, C. N., Scott, B. N. V., et al. (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo, Nat. Med., 18, 1386-1393, doi: 10.1038/nm.2847.

61. Yousefi, S., Gold, J. A., Andina, N., Lee, J. J., Kelly, A. M., et al. (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense, Nat. Med., 14, 949-953, doi: 10.1038/nm.1855.

62. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I., and Simon, H. U. (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps, Cell Death Differ., 16, 1438-1444, doi: 10.1038/cdd.2009.96.

63. Tanaka, K. (2020) The PINK1-parkin axis: an overview, Neurosci Res., doi: 10.1016/j.neures.2020.01.006.

64. Liu, L., Sakakibara, K., Chen, Q., and Okamoto, K. (2014) Receptor-mediated mitophagy in yeast and mammalian systems, Cell Res., 24, 787-795, doi: 10.1038/cr.2014.75.

65. Simpson, C. F., and Kling, J. M. (1968) The mechanism of mitochondrial extrusion from phenylhydrazine-induced reticulocytes in the circulating blood, J. Cell. Biol., 36, 103-109.

66. Ney, P. A. (2015) Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX, Biochim. Biophys. Acta, 1853, 2775-2783, doi: 10.1016/j.bbamcr.2015.02.022.

67. Marinković, M., Šprung, M., and Novak, I. (2020) Dimerization of mitophagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery, Autophagy, 1-12, doi: 10.1080/15548627.2020.1755120.

68. Aerbajinai, W., Giattina, M., Lee, Y. T., Raffeld, M., and Miller, J. L. (2003) The roapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation, Blood, 102, 712-717, doi: 10.1182/blood-2002-11-3324.

69. Schweers, R. L., Zhang, J., Randall, M. S., Loyd, M. R., Li, W., et al. (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation, Proc. Natl. Acad. Sci. USA, 104, 19500-19505, doi: 10.1073/pnas.0708818104.

70. Kundu, M., Lindsten, T., Yang, C.-Y., Wu, J., Zhao, F., et al. (2008) Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation, Blood, 112, 1493-1502, doi: 10.1182/blood-2008-02-137398.

71. Wong, P.-M., Puente, C., Ganley, I. G., and Jiang, X. (2013) The ULK1 complex: sensing nutrient signals for autophagy activation, Autophagy, 9, 124-137, doi: 10.4161/auto.23323.

72. Honda, S., Arakawa, S., Nishida, Y., Yamaguchi, H., Ishii, E., and Shimizu, S. (2014) Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes, Nat. Commun., 5, 4004, doi: 10.1038/ncomms5004.

73. Zhang, J., Randall, M. S., Loyd, M. R., Dorsey, F. C., Kundu, M., et al. (2009) Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation, Blood, 114, 157-164, doi: 10.1182/blood-2008-04-151639.

74. Wang, J., Fang, Y., Yan, L., Yuan, N., Zhang, S., Xu, L., et al. (2016) Erythroleukemia cells acquire an alternative mitophagy capability, Sci Rep, 6, 24641, doi: 10.1038/srep24641.

75. Hammerling, B. C., Shires, S. E., Leon, L. J., Cortez, M. Q., and Gustafsson, Å. B. (2020) Isolation of Rab5-positive endosomes reveals a new mitochondrial degradation pathway utilized by BNIP3 and Parkin, Small GTPases, 11, 69-76, doi: 10.1080/21541248.2017.1342749.

76. Laude-Taupin, A., Jia, J., Mudd, M., and Deretic, V. (2017) Autophagy’s secret life: secretion instead of degradation, Essays Biochem., 61, 637-647, doi: 10.1042/EBC20170024.

77. Griffiths, R. E., Kupzig, S., Cogan, N., Mankelow, T. J., Betin, V. M. S., et al. (2012) Maturing reticulocytes internalize plasma membrane in glycophorin A-containing vesicles that fuse with autophagosomes before exocytosis, Blood, 119, 6296-6306, doi: 10.1182/blood-2011-09-376475.

78. Schmidt, J., Prehn, S., and Rapoport, S. M. (1985) Proteolysis during in vitro-maturation of rabbit reticulocytes, Biomed. Biochim. Acta, 44, 1429–1434.

79. Rapoport, S. M., and Schewe, T. (1986) The maturational breakdown of mitochondria in reticulocytes, Biochim. Biophys. Acta, 864, 471-495, doi: 10.1016/0304-4157(86)90006-7.

80. Ahlqvist, K. J., Leoncini, S., Pecorelli, A., Wortmann, S. B., Ahola, S., et al. (2015) MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction, Nat. Commun., 6, 6494, doi: 10.1038/ncomms7494.

81. Brennan, L. A., McGreal-Estrada, R., Logan, C. M., Cvekl, A., Menko, A. S., and Kantorow, M. (2018) BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation, Exp. Eye. Res., 174, 173-184, doi: 10.1016/j.exer.2018.06.003.

82. Morishita, H., and Mizushima, N. (2016) Autophagy in the lens, Exp. Eye Res, 144, 22-28, doi: 10.1016/j.exer.2015.08.019.

83. Remé, C. E., and Young, R. W. (1977) The effects of hibernation on cone visual cells in the ground squirrel, Invest. Ophthalmol. Vis. Sci., 16, 815-840.

84. Altshuler-Keylin, S., Shinoda, K., Hasegawa, Y., Ikeda, K., Hong, H., et al. (2016) Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance, Cell. Metab., 24, 402-419, doi: 10.1016/j.cmet.2016.08.002.

85. Lu, X., Altshuler-Keylin, S., Wang, Q., Chen, Y., Henrique Sponton, C., et al. (2018) Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism, Sci. Signal., 11, doi: 10.1126/scisignal.aap8526.

86. Fujiwara, M., Tian, L., Le, P. T., DeMambro, V. E., Becker, K. A., et al. (2019) The mitophagy receptor Bcl-2-like protein 13 stimulates adipogenesis by regulating mitochondrial oxidative phosphorylation and apoptosis in mice, J. Biol. Chem., 294, 12683-12694, doi: 10.1074/jbc.RA119.008630.

87. Moriyama, M., Moriyama, H., Uda, J., Matsuyama, A., Osawa, M., and Hayakawa, T. (2014) BNIP3 plays crucial roles in the differentiation and maintenance of epidermal keratinocytes, J. Invest. Dermatol., 134, 1627-1635, doi: 10.1038/jid.2014.11.

88. Jones, L. A., Harland, D. P., Jarrold, B. B., Connolly, J. E., and Davis, M. G. (2018) The walking dead: sequential nuclear and organelle destruction during hair development, Br. J. Dermatol., 178, 1341-1352, doi: 10.1111/bjd.16148.

89. Sin, J., Andres, A. M., Taylor, D. J. R., Weston, T., Hiraumi, Y., et al. (2016) Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts, Autophagy, 12, 369-380, doi: 10.1080/15548627.2015.1115172.

90. Gong, G., Song, M., Csordas, G., Kelly, D. P., Matkovich, S. J., and Dorn, G. W., 2nd. (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice, Science, 350, 2459, doi: 10.1126/science.aad2459.

91. Lampert, M. A., Orogo, A. M., Najor, R. H., Hammerling, B. C., Leon, L. J., et al. (2019) BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation, Autophagy, 15, 1182-1198, doi: 10.1080/15548627.2019.1580095.

92. Kanki, T., and Klionsky, D. J. (2008) Mitophagy in yeast occurs through a selective mechanism, J. Biol. Chem., 283, 32386-32393, doi: 10.1074/jbc.M802403200.

93. Joshi, A., and Kundu, M. (2013) Mitophagy in hematopoietic stem cells: the case for exploration, Autophagy, 9, 1737-1749, doi: 10.4161/auto.26681.

94. Mortensen, M., Ferguson, D. J. P., Edelmann, M., Kessler, B., Morten, K. J., et al. (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo, Proc. Natl. Acad. Sci. USA, 107, 832-837, doi: 10.1073/pnas.0913170107.

95. Xiang, G., Yang, L., Long, Q., Chen, K., Tang, H., et al. (2017) BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming, Autophagy, 13, 1543-1555, doi: 10.1080/15548627.2017.1338545.

96. Vazquez-Martin, A., Van den Haute, C., Cufí, S., Corominas-Faja, B., Cuyàs, E., et al. (2016) Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate, Aging, 8, 1330-1352, doi: 10.18632/aging.100976.

97. Esteban-Martínez, L., Sierra-Filardi, E., McGreal, R. S., Salazar-Roa, M., Mariño, G., et al. (2017) Programmed mitophagy is essential for the glycolytic switch during cell differentiation, EMBO J., 36, 1688-1706, doi: 10.15252/embj.201695916.

98. Al Rawi, S., Louvet-Vallée, S., Djeddi, A., Sachse, M., Culetto, E., et al. (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission, Science, 334, 1144-1147, doi: 10.1126/science.1211878.

99. Lim, Y., Rubio-Peña, K., Sobraske, P. J., Molina, P. A., Brookes, P. S., et al. (2019) Fndc-1 contributes to paternal mitochondria elimination in C. elegans, Dev. Biol., 454, 15-20, doi: 10.1016/j.ydbio.2019.06.016.

100. Molina, P., Lim, Y., and Boyd, L. (2019) Ubiquitination is required for the initial removal of paternal organelles in C. elegans, Dev. Biol., 453, 168-179, doi: 10.1016/j.ydbio.2019.05.015.

101. Karavaeva, I. E., Golyshev, S. A., Smirnova, E. A., Sokolov, S. S., Severin, F. F., and Knorre, D. A. (2017) Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA, J. Cell Sci., 130, 1274-1284, doi: 10.1242/jcs.197269.

102. Sato, M., and Sato, K. (2013) Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA, Biochim. Biophys. Acta, 1833, 1979-1984, doi: 10.1016/j.bbamcr.2013.03.010.

103. DeLuca, S. Z., and O’Farrell, P. H. (2012) Barriers to male transmission of mitochondrial DNA in sperm development, Dev. Cell, 22, 660-668, doi: 10.1016/j.devcel.2011.12.021.

104. Politi, Y., Gal, L., Kalifa, Y., Ravid, L., Elazar, Z., and Arama, E. (2014) Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila, Dev. Cell, 29, 305-320, doi: 10.1016/j.devcel.2014.04.005.

105. Luo, S.-M., Ge, Z.-J., Wang, Z.-W., Jiang, Z.-Z., Wang, Z.-B., et al. (2013) Unique insights into maternal mitochondrial inheritance in mice, Proc. Natl. Acad. Sci. USA, 110, 13038-13043, doi: 10.1073/pnas.1303231110.

106. Rojansky, R., Cha, M.-Y., and Chan, D. C. (2016) Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1, Elife, 5, doi: 10.7554/eLife.17896.

107. Song, W.-H., Yi, Y.-J., Sutovsky, M., Meyers, S., and Sutovsky, P. (2016) Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization, Proc. Natl. Acad. Sci. USA, 113, 5261-5270, doi: 10.1073/pnas.1605844113.

108. Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999) Ubiquitin tag for sperm mitochondria, Nature, 402, 371-372, doi: 10.1038/46466.

109. Fehrenbacher, K. L., Yang, H.-C., Gay, A. C., Huckaba, T. M., and Pon, L. A. (2004) Live cell imaging of mitochondrial movement along actin cables in budding yeast, Curr. Biol., 14, 1996-2004, doi: 10.1016/j.cub.2004.11.004.

110. Higuchi-Sanabria, R., Charalel, J. K., Viana, M. P., Garcia, E. J., Sing, C. N., et al. (2016) Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae, Mol. Biol. Cell, 27, 776-787, doi: 10.1091/mbc.E15-07-0455.

111. McFaline-Figueroa, J. R., Vevea, J., Swayne, T. C., Zhou, C., Liu, C., et al. (2011) Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast, Aging Cell, 10, 885-895. doi: 10.1111/j.1474-9726.2011.00731.x.

112. Knorre, D. A., Azbarova, A. V., Galkina, K. V., Feniouk, B. A., and Severin, F. F. (2018) Replicative aging as a source of cell heterogeneity in budding yeast, Mech. Ageing Dev., 176, 24-31, doi: 10.1016/j.mad.2018.09.001.

113. Dalton, C. M., and Carroll, J. (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte, J. Cell Sci., 126, 2955-2964, doi: 10.1242/jcs.128744.

114. Rivolta, M. N., and Holley, M. C. (2002) Asymmetric segregation of mitochondria and mortalin correlates with the multi-lineage potential of inner ear sensory cell progenitors in vitro, Brain Res. Dev. Brain Res., 133, 49-56, doi: 10.1016/s0165-3806(01)00321-2.

115. Katajisto, P., Döhla, J., Chaffer, C. L., Pentinmikko, N., Marjanovic, N., et al. (2015) Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness, Science, 348, 340-343, doi: 10.1126/science.1260384.

116. Hinge, A., He, J., Bartram, J., Javier, J., Xu, J., et al. (2020) Asymmetrically segregated mitochondria provide cellular memory of hematopoietic stem cell replicative history and drive HSC attrition, Cell. Stem. Cell, 26, 420-430, doi: 10.1016/j.stem.2020.01.016.

117. Wu, M.-J., Chen, Y.-S., Kim, M. R., Chang, C.-C., Gampala, S., et al. (2019) Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin, Cell. Metab., 29, 993-1002, doi: 10.1016/j.cmet.2018.11.004.

118. Krakauer, D. C., and Mira, A. (1999) Mitochondria and germ-cell death, Nature, 400, 125-126, doi: 10.1038/22026.

119. Floros, V. I., Pyle, A., Dietmann, S., Wei, W., Tang, W. C. W., et al. (2018) Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos, Nat. Cell. Biol., 20, 144-151, doi: 10.1038/s41556-017-0017-8.