БИОХИМИЯ, 2020, том 85, вып. 10, с. 1500–1512

УДК 577.24

Участие тирозинкиназного рецептора ERBB2/HER2 в регуляции клеточной смерти

Обзор

© 2020 А.А. Дакс 1#, О.А. Федорова 1#, О.Ю. Шувалов 1, С.E. Парфеньев 1, Н.А. Барлев 1,2*

Институт цитологии РАН, 194064 Санкт-Петербург, Россия

Московский физико-технический институт (МФТИ), 141701 Московская облаcть, Долгопрудный, Россия; электронная почта: nick.a.barlev@gmail.com

Поступила в редакцию 24.07.2020
После доработки 10.08.2020
Принята к публикации 12.08.2020

DOI: 10.31857/S0320972520100152

КЛЮЧЕВЫЕ СЛОВА: HER2, рецептор эпидермального фактора роста, рак, PI3K-AKT сигнальный путь, апоптоз.

Аннотация

HER2 (рецептор эпидермального фактора роста человека 2), известный также как ERBB2, CD340 или протоонкоген Neu, является членом семейства рецепторов эпидермального фактора роста. Члены семейства ERBB, включая HER2, активируют молекулярные каскады, стимулирующие пролиферацию, миграцию и устойчивость онкогенных клеток к противораковой терапии. Данные белки часто сверхэкспрессированы и/или мутированы в различных типах рака и являются перспективными мишенями для создания противораковой терапии. Для лечения ряда опухолей одобрены анти-HER2 препараты, которые включают в себя моноклональные антитела, а также низкомолекулярные ингибиторы тиро зинкиназных рецепторов, таких как лапатиниб, нератиниб и пиротиниб. Помимо активации сигнальных путей, ответственных за пролиферацию и выживание клеток в условиях стрессовых воздействий, HER2 способен также напрямую регулировать процесс программируемой клеточной гибели на различных уровнях. В данном обзоре проанализированы опубликованные работы, посвященные участию рецептора HER2 в различных сигнальных путях и его роли в регуляции апоптоза.

Сноски

* Адресат для корреспонденции.

# Авторы внесли равный вклад в работу.

Финансирование

Работа выполнена при финансовой поддержке РНФ (грант 19-75-10059), РФФИ (грант 18-315-20013 мол_а_вед) и гранта Правительства Российской Федерации для государственной поддержки научных исследований, проводимых под руководством ведущих ученых в российских образовательных организациях высшего образования, научных учреждениях, подведомственных Федеральному агентству научных организаций, и государственных научных центрах Российской Федерации (14.W03.31.0029).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая работа не содержит описания каких-либо исследований, в которых в качестве объектов были использованы люди или животные.

Список литературы

1. Lemmon, M. A., Schlessinger, J., and Ferguson, K. M. (2014) The EGFR family: not so prototypical receptor tyrosine kinases, Cold Spring Harb. Perspect. Biol., 6, a020768, doi: 10.1101/cshperspect.a020768.

2. Iqbal, N., and Iqbal, N. (2014) Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications, Mol. Biol. Intern., 2014, 852748, doi: 10.1155/2014/852748.

3. Tompa, R. (2018) FDA Approves trastuzumab biosimilar, Cancer Discov., 8, 130, doi: 10.1158/2159-8290.cd-nb2017-183.

4. Yarden, Y., and Sliwkowski, M. X. (2001) Untangling the ErbB signaling network, Nat. Rev. Mol. Cell Biol., 2, 127-137, doi: 10.1038/35052073.

5. Bertelsen, V., and Stang, E. (2014) The mysterious ways of ErbB2/HER2 trafficking, Membranes, 4, 424-446, doi: 10.3390/membranes4030424.

6. Lai, C., and Lemke, G. (1991) An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system, Neuron, 6, 691-704, doi: 10.1016/0896-6273(91)90167-x.

7. Lemke, G. (2013) Biology of the TAM receptors, Cold Spring Harb. Perspect. Biol., 5, a009076, doi: 10.1101/cshperspect.a009076.

8. Liu, L., Greger, J., Shi, H., Liu, Y., Greshock, J., Annan, R., Halsey, W., Sathe, G. M., Martin, A. M., and Gilmer, T. M. (2009) Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL, Cancer Res., 69, 6871-6878, doi: 10.1158/0008-5472.can-08-4490.

9. Tanizaki, J., Okamoto, I., Sakai, K., and Nakagawa, K. (2011) Differential roles of trans-phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET in lung cancer with MET amplification, Br. J. Cancer, 105, 807-813, doi: 10.1038/bjc.2011.322.

10. Fruman, D. A., Meyers, R. E., and Cantley, L. C. (1998) Phosphoinositide kinases, Ann. Rev. Biochem., 67, 481-507, doi: 10.1146/annurev.biochem.67.1.481.

11. Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C., and González-Barón, M. (2004) PI3K/Akt signalling pathway and cancer, Cancer Treat. Rev., 30, 193-204, doi: 10.1016/j.ctrv.2003.07.007.

12. Guo, H., German, P., Bai, S., Barnes, S., Guo, W., et al. (2015) The PI3K/AKT pathway and renal cell carcinoma, J. Genet. Genomics, 42, 343-353, doi: 10.1016/j.jgg.2015.03.003.

13. Jones, P. F., Jakubowicz, T., and Hemmings, B. A. (1991) Molecular cloning of a second form of rac protein kinase, Cell Regul., 2, 1001-1009, doi: 10.1091/mbc.2.12.1001.

14. Jones, P. F., Jakubowicz, T., Pitossi, F. J., Maurer, F., and Hemmings, B. A. (1991) Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily, Proc. Natl. Acad. Sci. USA, 88, 4171-4175, doi: 10.1073/pnas.88.10.4171.

15. Masure, S., Haefner, B., Wesselink, J. J., Hoefnagel, E., Mortier, E., et al. (1999) Molecular cloning, expression and characterization of the human serine/threonine kinase Akt-3, Eur. J. Biochem., 265, 353-360, doi: 10.1046/j.1432-1327.1999.00774.x.

16. Thorpe, L. M., Yuzugullu, H., and Zhao, J. J. (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting, Nat. Rev. Cancer, 15, 7-24, doi: 10.1038/nrc3860.

17. Nicholson, K. M., and Anderson, N. G. (2002) The protein kinase B/Akt signalling pathway in human malignancy, Cell. Signal., 14, 381-395, doi: 10.1016/s0898-6568(01)00271-6.

18. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., et al. (1998) Regulation of cell death protease caspase-9 by phosphorylation, Science, 282, 1318-1321, doi: 10.1126/science.282.5392.1318.

19. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M. E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery, Cell, 91, 231-241, doi: 10.1016/s0092-8674(00)80405-5.

20. Kim, A. H., Khursigara, G., Sun, X., Franke, T. F., and Chao, M. V. (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1, Mol. Cell. Biol., 21, 893-901, doi: 10.1128/mcb.21.3.893-901.2001.

21. Du, K., and Montminy, M. (1998) CREB is a regulatory target for the protein kinase Akt/PKB, J. Biol. Chem., 273, 32377-32379, doi: 10.1074/jbc.273.49.32377.

22. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., and Donner, D. B. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase, Nature, 401, 82-85, doi: 10.1038/43466.

23. Levine, B., and Kroemer, G. (2008) Autophagy in the pathogenesis of disease, Cell, 132, 27-42, doi: 10.1016/j.cell.2007.12.018.

24. Hay, N., and Sonenberg, N. (2004) Upstream and downstream of mTOR, Genes Dev., 18, 1926-1945, doi: 10.1101/gad.1212704.

25. Memmott, R. M., and Dennis, P. A. (2009) Akt-dependent and -independent mechanisms of mTOR regulation in cancer, Cell. Signal., 21, 656-664, doi: 10.1016/j.cellsig.2009.01.004.

26. Zhong, H., Chiles, K., Feldser, D., Laughner, E., Hanrahan, C., Georgescu, M.-M., Simons, J. W., and Semenza, G. L. (2000) Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics, Cancer Res., 60, 1541-1545.

27. Kauffmann-Zeh, A., Rodriguez-Viciana, P., Ulrich, E., Gilbert, C., Coffer, P., Downward, J., and Evan, G. (1997) Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB, Nature, 385, 544-548, doi: 10.1038/385544a0.

28. Manning, B. D., and Toker, A. (2017) AKT/PKB signaling: navigating the network, Cell, 169, 381-405, doi: 10.1016/j.cell.2017.04.001.

29. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., et al. (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor, Cell, 96, 857-868, doi: 10.1016/s0092-8674(00)80595-4.

30. Kops, G. J., de Ruiter, N. D., De Vries-Smits, A. M., Powell, D. R., Bos, J. L., and Burgering, B. M. (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B, Nature, 398, 630-634, doi: 10.1038/19328.

31. Van der Vos, K. E., and Coffer, P. J. (2011) The extending network of FOXO transcriptional target genes, Antiox. Redox Signal., 14, 579-592, doi: 10.1089/ars.2010.3419.

32. Webb, A. E., and Brunet, A. (2014) FOXO transcription factors: key regulators of cellular quality control, Trends Biochem. Sci., 39, 159-169, doi: 10.1016/j.tibs.2014.02.003.

33. Lu, Y., Lin, Y. Z., LaPushin, R., Cuevas, B., Fang, X., et al. (1999) The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells, Oncogene, 18, 7034-7045, doi: 10.1038/sj.onc.1203183.

34. Kim, H., Huang, W., Jiang, X., Pennicooke, B., Park, P. J., and Johnson, M. D. (2010) Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship, Proc. Natl. Acad. Sci. USA, 107, 2183-2188, doi: 10.1073/pnas.0909896107.

35. Molina, J. R., Morales, F. C., Hayashi, Y., Aldape, K. D., and Georgescu, M. M. (2010) Loss of PTEN binding adapter protein NHERF1 from plasma membrane in glioblastoma contributes to PTEN inactivation, Cancer Res., 70, 6697-6703, doi: 10.1158/0008-5472.can-10-1271.

36. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., and Pandolfi, P. P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology, Nature, 465, 1033-1038, doi: 10.1038/nature09144.

37. Silva, A., Yunes, J. A., Cardoso, B. A., Martins, L. R., Jotta, P. Y., et al. (2008) PTEN post-translational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability, J. Clin. Invest., 118, 3762-3774, doi: 10.1172/jci34616.

38. Wiencke, J. K., Zheng, S., Jelluma, N., Tihan, T., Vandenberg, S., et al. (2007) Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma, Neuro Oncol., 9, 271-279, doi: 10.1215/15228517-2007-003.

39. Plotnikov, A., Flores, K., Maik-Rachline, G., Zehorai, E., Kapri-Pardes, E., et al. (2015) The nuclear translocation of ERK1/2 as an anticancer target, Nat. Commun., 6, 6685, doi: 10.1038/ncomms7685.

40. Cargnello, M., and Roux, P. P. (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases, Microbiol. Mol. Biol. Rev., 75, 50-83, doi: 10.1128/mmbr.00031-10.

41. Johnson, D. S., and Chen, Y. H. (2012) Ras family of small GTPases in immunity and inflammation, Curr. Opin. Pharm., 12, 458-463, doi: 10.1016/j.coph.2012.02.003.

42. Hsu, J. L., and Hung, M.-C. (2016) The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer, Cancer Metast. Rev., 35, 575-588, doi: 10.1007/s10555-016-9649-6.

43. Matallanas, D., Birtwistle, M., Romano, D., Zebisch, A., Rauch, J., von Kriegsheim, A., and Kolch, W. (2011) Raf family kinases: old dogs have learned new tricks, Genes Cancer, 2, 232-260, doi: 10.1177/1947601911407323.

44. Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E., et al. (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF, Cell, 65, 663-675, doi: 10.1016/0092-8674(91)90098-j.

45. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., et al. (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance, Biochim. Biophys. Acta, 1773, 1263-1284, doi: 10.1016/j.bbamcr.2006.10.001.

46. Wei, M. C., Zong, W.-X., Cheng, E. H.-Y., Lindsten, T., Panoutsakopoulou, V., et al. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death, Science, 292, 727-730, doi: 10.1126/science.1059108.

47. Peña-Blanco, A., and García-Sáez, A. J. (2018) Bax, Bak and beyond – mitochondrial performance in apoptosis, FEBS J., 285, 416-431.

48. Roufayel, R. (2016) Regulation of stressed-induced cell death by the Bcl-2 family of apoptotic proteins, Mol. Membrane Biol., 33, 89-99, doi: 10.1111/febs.14186.

49. Villunger, A., Michalak, E. M., Coultas, L., Müllauer, F., Böck, G., Ausserlechner, M. J., Adams, J. M., and Strasser, A. (2003) p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa, Science, 302, 1036-1038, doi: 10.1126/science.1090072.

50. Toshiyuki, M., and Reed, J. C. (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell, 80, 293-299, doi: 10.1016/0092-8674(95)90412-3.

51. Muthalagu, N., Junttila, M. R., Wiese, K. E., Wolf, E., Morton, J., et al. (2014) BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues, Cell Rep., 8, 1347-1353, doi: 10.1016/j.celrep.2014.07.057.

52. Jacobs, W. B., Govoni, G., Ho, D., Atwal, J. K., Barnabe-Heider, F., et al. (2005) p63 is an essential proapoptotic protein during neural development, Neuron, 48, 743-756, doi: 10.1016/j.neuron.2005.10.027.

53. Melino, G., Bernassola, F., Ranalli, M., Yee, K., Zong, W. X., et al. (2004) p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation, J. Biol. Chem., 279, 8076-8083, doi: 10.1074/jbc.M307469200.

54. Westphal, D., Kluck, R., and Dewson, G. (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis, Cell Death Differ., 21, 196-205.

55. Dorstyn, L., Akey, C. W., and Kumar, S. (2018) New insights into apoptosome structure and function, Cell Death Differ., 25, 1194-1208, doi: 10.1038/s41418-017-0025-z.

56. Lavrik, I., Golks, A., and Krammer, P. H. (2005) Death receptor signaling, J. Cell Sci., 118, 265-267, doi: 10.1242/jcs.01610.

57. Bean, G. R., Ganesan, Y. T., Dong, Y., Takeda, S., Liu, H., et al. (2013) PUMA and BIM are required for oncogene inactivation-induced apoptosis, Sci. Signal., 6, 20, doi: 10.1126/scisignal.2003483.

58. Kanat, O., Ertas, H., and Caner, B. (2018) Dual HER2 inhibition strategies in the management of treatment-refractory metastatic colorectal cancer: history and status, World J. Clin. Cases, 6, 418.

59. Tzivion, G., Dobson, M., and Ramakrishnan, G. (2011) FoxO transcription factors; regulation by AKT and 14-3-3 proteins, Biochim. Bioph. Acta, 1813, 1938-1945, doi: 10.1016/j.bbamcr.2011.06.002.

60. You, H., Pellegrini, M., Tsuchihara, K., Yamamoto, K., Hacker, G., et al. (2006) FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal, J. Exp. Med., 203, 1657-1663, doi: 10.1084/jem.20060353.

61. Gilley, J., Coffer, P. J., and Ham, J. (2003) FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons, J. Cell Biol., 162, 613-622.

62. Akiyama, T., Dass, C. R., and Choong, P. F. (2009) Bim-targeted cancer therapy: a link between drug action and underlying molecular changes, Mol. Cancer Ther., 8, 3173-3180, doi: 10.1158/1535-7163.MCT-09-0685.

63. Wan, L., Tan, M., Yang, J., Inuzuka, H., Dai, X., et al. (2014) APCCdc20 suppresses apoptosis through targeting Bim for ubiquitination and destruction, Dev. Cell, 29, 377-391, doi: 10.1016/j.devcel.2014.04.022.

64. Carpenter, R. L., Han, W., Paw, I., and Lo, H.-W. (2013) HER2 phosphorylates and destabilizes pro-apoptotic PUMA, leading to antagonized apoptosis in cancer cells, PLoS One, 8, e78836, doi: 10.1371/journal.pone.0078836.

65. Floros, K. V., Song, K.-A., Lochmann, T. L., Hughes, M. T., Heisey, D. A., et al. (2017) Deficient NOXA in HER2-amplified breast cancer drives kinase inhibitor resistance, Proc. 105th Ann. Meeting Am. Assoc. Cancer Res., 77, 3082, doi: 10.1158/1538-7445.AM2017-3082.

66. Floros, K. V., Lochmann, T. L., Hu, B., Monterrubio, C., Hughes, M. T., et al. (2018) Coamplification of miR-4728 protects HER2-amplified breast cancers from targeted therapy, Proc. Natl. Acad. Sci. USA, 115, 2594-2603, doi: 10.1073/pnas.1717820115.

67. Liu, W., Swetzig, W. M., Medisetty, R., and Das, G. M. (2011) Estrogen-mediated upregulation of Noxa is associated with cell cycle progression in estrogen receptor-positive breast cancer cells, PLoS One, 6, e29466, doi: 10.1371/journal.pone.0029466.

68. Pandey, V., Zhu, T., Ma, L., and Lobie, P. E. (2018) Bad phosphorylation as a target of inhibition in oncology, Cancer Lett., 415, 177-186, doi: 10.1016/j.canlet.2017.11.017.

69. Czabotar, P. E., Lessene, G., Strasser, A., and Adams, J. M. (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy, Nat. Rev. Mol. Cell Biol., 15, 49-63, doi: 10.1038/nrm3722.

70. Ding, Y., Liu, Z., Desai, S., Zhao, Y., Liu, H., et al. (2012) Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism, Nat. Commun., 3, 1-12, doi: 10.1038/ncomms2236.

71. Rohlenova, K., Sachaphibulkij, K., Stursa, J., Bezawork-Geleta, A., Blecha, J., et al. (2017) Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2high breast cancer, Antioxid. Redox Signal., 26, 84-103, doi: 10.1089/ars.2016.6677.

72. Piechocki, M. P., Yoo, G. H., Dibbley, S. K., Amjad, E. H., and Lonardo, F. (2006) Iressa induces cytostasis and augments Fas-mediated apoptosis in acinic cell adenocarcinoma overexpressing HER2/neu, Int. J. Cancer, 119, 441-454, doi: 10.1002/ijc.21837.

73. Liang, C. H., Shiu, L. Y., Chang, L. C., Sheu, H. M., and Kuo, K. W. (2007) Solama rgine upregulation of Fas, downregulation of HER2, and enhancement of cytotoxicity using epirubicin in NSCLC cells, Mol. Nutrit. Food Res., 51, 999-1005, doi: 10.1002/mnfr.200700044.

74. Shepard, H. M., Lewis, G. D., Sarup, J. C., Fendly, B. M., Maneval, D., et al. (1991) Monoclonal antibody therapy of human cancer: taking the HER2 protooncogene to the clinic, J. Clin. Immunol., 11, 117-127.

75. Zhou, B. P., Hu, M. C.-T., Miller, S. A., Yu, Z., Xia, W., et al. (2000) HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-κB pathway, J. Biol. Chem., 275, 8027-8031, doi: 10.1074/jbc.275.11.8027.

76. Eustace, A. J., Conlon, N. T., McDermott, M. S., Browne, B. C., O’Leary, P., et al. (2018) Development of acquired resistance to lapatinib may sensitise HER2-positive breast cancer cells to apoptosis induction by obatoclax and TRAIL, BMC Cancer, 18, 965, doi: 10.1186/s12885-018-4852-1.

77. Dubská, L., Anděra, L., and Sheard, M. A. (2005) HER2 signaling downregulation by trastuzumab and suppression of the PI3K/Akt pathway: an unexpected effect on TRAIL-induced apoptosis, FEBS Lett., 579, 4149-4158, doi: 10.1016/j.febslet.2005.06.047.

78. Arman, K., Ergün, S., Temiz, E., and Öztuzcu, S. (2014) The interrelationship between HER2 and CASP3/8 with apoptosis in different cancer cell lines, Mol. Biol. Rep., 41, 8031-8036, doi: 10.1007/s11033-014-3700-x.

79. Dan, H. C., Sun, M., Kaneko, S., Feldman, R. I., Nicosia, S. V., et al. (2004) Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP), J. Biol. Chem., 279, 5405-5412, doi: 10.1074/jbc.M312044200.

80. Obexer, P., and Ausserlechner, M. J. (2014) X-linked inhibitor of apoptosis protein – a critical death resistance regulator and therapeutic target for personalized cancer therapy, Front. Oncol., 4, 197, doi: 10.3389/fonc.2014.00197.

81. Strohecker, A. M., Yehiely, F., Chen, F., and Cryns, V. L. (2008) Caspase cleavage of HER-2 releases a Bad-like cell death effector, J. Biol. Chem., 283, 18269-18282, doi: 10.1074/jbc.M802156200.

82. Marouco, D., Garabadgiu, A. V., Melino, G., and Barlev, N. A. (2013) Lysine-specific modifications of p53: a matter of life and death? Oncotarget, 4, 1556, doi: 10.18632/oncotarget.1436.

83. Zheng, L., Ren, J., Zhang, L., Chen, Q., and Zhu, H. (2004) Overexpression of HER2/neu downregulates wild p53 protein expression via PI3K and Ras/Raf/MEK/ERK pathways in human breast cancer cells, Chin. J. Pathol., 33, 358-362.

84. Lv, C., Hong, Y., Miao, L., Li, C., Xu, G., et al. (2013) Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway, Cell Death Dis., 4, 952-952, doi: 10.1038/cddis.2013.484.

85. Sun, C.-Y., Zhu, Y., Li, X.-F., Wang, X.-Q., Tang, L.-P., et al. (2018) Scutellarin increases cisplatin-induced apoptosis and autophagy to overcome cisplatin resistance in non-small cell lung cancer via ERK/p53 and c-met/AKT signaling pathways, Front. Pharmacol., 9, 92, doi: 10.3389/fphar.2018.00092.

86. Singh, P., Ravanan, P., and Talwar, P. (2016) Death associated protein kinase 1 (DAPK1): a regulator of apoptosis and autophagy, Front. Mol. Neurosci., 9, 46, doi: 10.3389/fnmol.2016.00046.

87. Maik-Rachline, G., Hacohen-Lev-Ran, A., and Seger, R. (2019) Nuclear ERK: Mechanism of translocation, substrates, and role in cancer, Int. J. Mol. Sci., 20, 1194.

88. Feng, J., Tamaskovic, R., Yang, Z., Brazil, D. P., Merlo, A., Hess, D., and Hemmings, B. A. (2004) Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation, J. Biol. Chem., 279, 35510-35517, doi: 10.3390/ijms20051194.

89. Li, A. G., Piluso, L. G., Cai, X., Wei, G., Sellers, W. R., and Liu, X. (2006) Mechanistic insights into maintenance of high p53 acetylation by PTEN, Mol. Cell, 23, 575-587.

90. Abraham, A. G., and O’Neill, E. (2014) PI3K/Akt-mediated regulation of p53 in cancer, Biochem. Soc. Trans., 42, 798-803, doi: 10.1016/j.molcel.2006.06.028.

91. Zhang, Y., Yang, H.-Y., Zhang, X.-C., Yang, H., Tsai, M., and Lee, M.-H. (2004) Tumor suppressor ARF inhibits HER-2/neu-mediated oncogenic growth, Oncogene, 23, 7132-7143, doi: 10.1038/sj.onc.1207918.

92. Lee, W.-P., Lan, K.-H., Li, C.-P., Chao, Y., Lin, H.-C., and Lee, S.-D. (2016) Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription, Cancer Lett., 375, 9-19, doi: 10.1016/j.canlet.2016.02.023.

93. Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., et al. (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences, Nature, 534, 47-54, doi: 10.1038/nature17676.

94. Nath, S., Ghatak, D., Das, P., and Roychoudhury, S. (2015) Transcriptional control of mitosis: deregulation and cancer, Front. Endocrinol., 6, 60, doi: 10.3389/fendo.2015.00060.

95. Li, D., and Marchenko, N. D. (2017) ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells, Oncotarget, 8, 5823, doi: 10.18632/oncotarget.12878.

96. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, doi: 10.1016/j.cell.2011.02.013.

97. Derakhshani, A., Rezaei, Z., Safarpour, H., Sabri, M., Mir, A., et al. (2020) Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy, J. Cell. Physiol., 235, 3142-3156, doi: 10.1002/jcp.29216.

98. Verma, S., Miles, D., Gianni, L., Krop, I. E., Welslau, M., et al. (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer, New Eng. J. Med., 367, 1783-1791, doi: 10.1056/NEJMoa1209124.

99. Modi, S., Park, H., Murthy, R. K., Iwata, H., Tamura, K., et al. (2020) Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: Results from a phase Ib study,J. Clin. Oncol., 38, 1887-1896, doi: 10.1200/JCO.19.02318.

100. Pernas, S., and Tolaney, S. M. (2019) HER2-positive breast cancer: new therapeutic frontiers and overcoming resistance, Ther. Adv. Med. Oncol., 11, doi: 10.1177/1758835919833519.