БИОХИМИЯ, 2020, том 85, вып. 10, с. 1411–1420

УДК 576.315.42

Молекулярные механизмы и функции p73, представителя семейства белков p53

Мини-обзор

© 2020 Дж. Мелино

Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; E-mail: melino@uniroma2.it

Поступила в редакцию 14.08.2020
После доработки 14.08.2020
Принята к публикации 19.08.2020

DOI: 10.31857/S0320972520100085

КЛЮЧЕВЫЕ СЛОВА: p53, семейство белков p53, p73, рак, образование ресничек, метаболизм, нейробиология.

Аннотация

Спустя 20 лет после обнаружения белка p53 и определения его ключевой роли в прогрессии рака были идентифицированы еще два члена этого семейства, а именно белки p63 и p73. С тех пор был собран большой объем информации о каждом из этих генов/белков и их взаимодействиях в клетке. Биологическая роль p73 была установлена с помощью четырех различных линий нокаутированных мышей: 1) с полностью удаленным геном TP73; 2) с экзонами, кодирующими изоформы полноразмерного белка TAp73; 3) с экзонами, кодирующими укороченную изоформу DNp73; и совсем недавно – 4) c экзонами, кодирующими C-концевую изоформу альфа. В этой работе, а также в исследованиях экспрессии генов при раке и огромном числе исследований, проведенных на молекулярном уровне, было выяснено основное участие TP73 в развитии рака, развитии нервной системы, образовании ресничек и в метаболизме нейронов. В настоящей работе мы обсуждаем основные результаты этих исследований.

Финансирование

Эта работа была поддержана Associazione Italiana per la Ricerca contro il Cancro (AIRC) (грант IG#20473; 2018-2022), совместной программой сотрудничества Министерства здравоохранения Италии и MAECI и Министерства науки и технологий КНР (грант № #PGR00961) to GM & Eleonora Candi. Работа также была поддержана Regione Lazio through LazioInnova Progetto Gruppo di Ricerca (грант № 85-2017-14986).

Благодарности

Я благодарен доктору Карло Джанини за его конструктивные предложения.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая статья не содержит описания выполненных автором исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Linzer, D. I. H., and Levine, A. J. (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40 transformed cells and uninfected embryonal carcinoma cells, Cell, 17, 43-52, doi: 10.1016/0092-8674(79)90293-9.

2. Lane, D. P., and Crawford, L. V. (1979) T antigen is bound to a host protein in SY40-transformed cells, Nature, 278, 261-263, doi: 10.1038/278261a0.

3. Finlay, C. A., Hinds, P. W., and Levine, A. J. (1989) The p53 proto-oncogene can act as a suppressor of transformation, Cell, 57, 1083-1093, doi: 10.1016/0092-8674(89)90045-7.

4. Candi, E., Cipollone, R., Rivetti di Val Cervo, P., Gonfloni, S., Melino, G., and Knight, R. (2008) p63 in epithelial development, Cell. Mol. Life Sci., 65, 3126-3133, doi: 10.1007/s00018-008-8119-x.

5. Candi, E., Terrinoni, A., Rufini, A., Chikh, A., Lena, A. M., Suzuki, Y., Sayan, B. S., Knight, R. A., and Melino, G. (2006) p63 is upstream of IKK alpha in epidermal development, J. Cell Sci., 119, 4617-4622, doi: 10.1242/jcs.03265.

6. Shalom-Feuerstein, R., Lena, A. M., Zhou, H., de La Forest Divonne, S., van Bokhoven, H., Candi, E., Melino, G., and Aberdam, D. (2011) ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis, Cell Death Differ., 18, 887-896, doi: 10.1038/cdd.2010.159.

7. Sullivan, K. D., Galbraith, M. D., Andrysik, Z., and Espinosa, J. M. (2018) Mechanisms of transcriptional regulation by p53, Cell Death Differ., 25, 133-143, doi: 10.1038/cdd.2017.174.

8. Levrero, M., de Laurenzi, V., Costanzo, A., Gong, J., Melino, G., and Wang, J. Y. (1999) Structure, function and regulation of p63 and p73, Cell Death Differ., 6, doi: 10.1038/SJ.CDD.4400624.

9. De Laurenzi, V., and Melino, G. (2000) Evolution of functions within the p53/p63/p73 family, Ann. N. Y. Acad. Sci., 926, 90-100, doi: 10.1111/j.1749-6632.2000.tb05602.x.

10. Candi, E., Agostini, M., Melino, G., and Bernassola, F. (2014) How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors, Hum. Mut., 35, 702-714, doi: 10.1002/humu.22523.

11. Tomasini, R., Tsuchihara, K., Wilhelm, M., Fujitani, M., Rufini, A., Cheung, C. C., Khan, F., Itie-Youten, A., Wakeham, A., Tsao, M.-S., Iovanna, J. L., Squire, J., Jurisica, I., Kaplan, D., Melino, G., Jurisicova, A., and Mak, T. W. (2008) TAp73 knockout shows genomic instability with infertility and tumor suppressor functions, Genes Dev., 22, 2677-2691, doi: 10.1101/gad.1695308.

12. Tomasini, R., Tsuchihara, K., Tsuda, C., Lau, S. K., Wilhelm, M., Rufini, A., Tsao, M., Iovanna, J. L., Jurisicova, A., Melino, G., and Mak, T. W. (2009) TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity, Proc. Natl. Acad. Sci. USA, 106, 797-802, doi: 10.1073/pnas.0812096106.

13. Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., et al. (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death, Cell Death Differ., 25, 486-541, doi: 10.1038/s41418-017-0012-4.

14. Melino, G., Knight, R. A., and Nicotera, P. (2005) How many ways to die? How many different models of cell death? Cell Death Differ., 12 Suppl. 2, 1457-1462, doi: 10.1038/sj.cdd.4401781.

15. Engeland, K. (2018) Cell cycle arrest through indirect transcriptional repression by P53: I have a DREAM, Cell Death Differ., 25, 114-132, doi: 10.1038/cdd.2017.172.

16. Wu, D., and Prives, C. (2018) Relevance of the p53-MDM2 axis to aging, Cell Death Differ., 25, 169-179, doi: 10.1038/cdd.2017.187.

17. Xu, R., Garcia-Barros, M., Wen, S., Li, F., Lin, C.-L., Hannun, Y. A., Obeid, L. M., and Mao, C. (2018) Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2, Cell Death Differ., 25, 841-856, doi: 10.1038/s41418-017-0018-y.

18. Min, S., Kim, K., Kim, S.-G., Cho, H., and Lee, Y. (2018) Chromatin-remodeling factor, RSF1, controls p53-mediated transcription in apoptosis upon DNA strand breaks, Cell Death Dis., 9, 1079, doi: 10.1038/s41419-018-1128-2.

19. Contadini, C., Monteonofrio, L., Virdia, I., Prodosmo, A., Valente, D., Chessa, L., Musio, A., Fava, L. L., Rinaldo, C., di Rocco, G., and Soddu, S. (2019) p53 mitotic centrosome localization preserves centrosome integrity and works as sensor for the mitotic surveillance pathway, Cell Death Dis., 10, 850, doi: 10.1038/s41419-019-2076-1.

20. Mantovani, F., Collavin, L., and del Sal, G. (2019) Mutant p53 as a guardian of the cancer cell, Cell Death Differ., 26, 199-212, doi: 10.1038/s41418-018-0246-9.

21. Parrales, A., Thoenen, E., Iwakuma, T. (2018) The interplay between mutant p53 and the mevalonate pathway, Cell Death Differ., 25, 460-470, doi: 10.1038/s41418-017-0026-y.

22. Sorrentino, G., Mantovani, F., and del Sal, G. (2018) The stiff RhoAd from mevalonate to mutant p53, Cell Death Differ., 25, 645-647, doi: 10.1038/s41418-018-0091-x.

23. Kim, M. P., and Lozano, G. (2018) Mutant p53 partners in crime, Cell Death Differ., 25, 161-168, doi: 10.1038/cdd.2017.185.

24. Bailey, J. M., Hendley, A. M., Lafaro, K. J., Pruski, M. A., Jones, N. C., et al. (2016) p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells, Oncogene, 35, 4282-4288, doi: 10.1038/onc.2015.441.

25. Pitolli, C., Wang, Y., Mancini, M., Shi, Y., Melino, G., and Amelio, I. (2019) Do mutations turn p53 into an oncogene? Int. J. Mol. Sci., 20, doi: 10.3390/ijms20246241.

26. Amelio, I., and Melino, G. (2015) The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression, Trends Biochem. Sci., 40, 425-434, doi: 10.1016/j.tibs.2015.04.007.

27. Amelio, I., Mancini, M., Petrova, V., Cairns, R. A., Vikhreva, P., et al. (2018) p53 mutants cooperate with HIF-1 in transcriptional regulation of extracellular matrix components to promote tumor progression, Proc. Natl. Acad. Sci. USA, 115, E10869-E10878, doi: 10.1073/pnas.1808314115.

28. Amelio, I. (2019) How mutant p53 empowers Foxh1 fostering leukaemogenesis? Cell Death Dis., 5, 108, doi: 10.1038/s41420-019-0191-5.

29. Kaiser, A. M., and Attardi, L. D. (2018) Deconstructing networks of p53-mediated tumor suppression in vivo, Cell Death Differ., 25, 93-103, doi: 10.1038/cdd.2017.171.

30. Amelio, I., Inoue, S., Markert, E. K., Levine, A. J., Knight, R. A., Mak, T. W., and Melino, G. (2015) TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation, Proc. Natl. Acad. Sci. USA, 112, 226-231, doi: 10.1073/pnas.1410609111.

31. Jacobs, W. B., Kaplan, D. R., and Miller, F. D. (2006) The p53 family in nervous system development and disease, J. Neurochem., 97, 1571-1584, doi: 10.1111/j.1471-4159.2006.03980.x.

32. Nemajerova, A., Amelio, I., Gebel, J., Dötsch, V., Melino, G., and Moll, U. M. (2018) Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism, Cell Death Differ., 25, 144-153, doi: 10.1038/cdd.2017.178.

33. Billon, N., Terrinoni, A., Jolicoeur, C., McCarthy, A., Richardson, W. D., Melino, G., and Raff, M. (2004) Roles for p53 and p73 during oligodendrocyte development, Development, 131, 1211-1220, doi: 10.1242/dev.01035.

34. Rogel, A., Popliker, M., Webb, C. G., and Oren, M. (1985) p53 cellular tumor antigen: analysis of MRNA levels in normal adult tissues, embryos, and tumors, Mol. Cell. Boil., 5, 2851-2855, doi: 10.1128/mcb.5.10.2851.

35. Hooper, C., Meimaridou, E., Tavassoli, M., Melino, G., Lovestone, S., and Killick, R. (2007) p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells, Neurosci. Lett., 418, 34-37, doi: 10.1016/j.neulet.2007.03.026.

36. Yang, A., Walker, N., Bronson, R., Kaghad, M., Oosterwegel, M., Bonnin, J., Vagner, C., Bonnet, H., Dikkes, P., Sharpe, A., McKeon, F., and Caput, D. (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours, Nature, 404, 99-103, doi: 10.1038/35003607.

37. Kawulok, J., Kawulok, M., and Deorovicz, S. (2019) Environmental metagenome classification for constructing a microbiome fingerprint, Biol. Direct, 14, 20, doi: 10.1186/S13062-019-0251-Z.

38. Ryan, F. J. (2019) Application of machine learning techniques for creating urban microbial fingerprints, Biol. Direct, 14, 13, doi: 10.1186/s13062-019-0245-x.

39. Zhu, C., Miller, M., Lusskin, N., Mahlich, Y., Wang, Y., Zeng, Z., and Bromberg, Y. (2019) Fingerprinting cities: differentiating subway microbiome functionality, Biol. Direct, 14, 19, doi: 10.1186/s13062-019-0252-y.

40. Walker, A. R., Grimes, T. L., Datta, S., and Datta, S. (2018) Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles, Biol. Direct, 13, 10, doi: 10.1186/s13062-018-0215-8.

41. Wilhelm, M. T., Rufini, A., Wetzel, M. K., Tsuchihara, K., Inoue, S., et al. (2010) Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway, Genes Dev., 24, 549-560, doi: 10.1101/gad.1873910.

42. Amelio, I., Panatta, E., Niklison-Chirou, M. V., Steinert, J. R., Agostini, M., Morone, N., Knight, R. A., and Melino, G. (2020) The C terminus of p73 is essential for hippocampal development, Proc. Natl. Acad. Sci. USA, 117, 15694-15701, doi: 10.1073/pnas.2000917117.

43. Gong, J. G., Costanzo, A., Yang, H. Q., Melino, G., Kaelin, W. G., Levrero, M., and Wang, J. Y. (1999) The tyrosine kinase C-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage, Nature, 399, 806-809, doi: 10.1038/21690.

44. Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J. C., et al. (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers, Cell, 90, 809-819, doi: 10.1016/s0092-8674(00)80540-1.

45. Suo, C., Deng, W., Vu, T. N., Li, M., Shi, L., and Pawitan, Y. (2018) Accumulation of potential driver genes with genomic alterations predicts survival of high-risk neuroblastoma patients, Biol. Direct, 13, 14, doi: 10.1186/s13062-018-0218-5.

46. Pieraccioli, M., Nicolai, S., Pitolli, C., Agostini, M., Antonov, A., Malewicz, M., Knight, R. A., Raschellà, G., and Melino, G. (2018) ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma, Proc. Natl. Acad. Sci. USA, 115, 7356-7361, doi: 10.1073/pnas.1801435115.

47. Han, Y., Ye, X., Wang, C., Liu, Y., Zhang, S., Feng, W., Huang, K., and Zhang, J. (2019) Integration of molecular features with clinical information for predicting outcomes for neuroblastoma patients, Biol. Direct, 14, 16, doi: 10.1186/s13062-019-0244-y.

48. Polewko-Klim, A., Lesiński, W., Mnich, K., Piliszek, R., and Rudnicki, W. R. (2018) Integration of multiple types of genetic markers for neuroblastoma may contribute to improved prediction of the overall survival, Biol. Direct, 13, 17, doi: 10.1186/s13062-018-0222-9.

49. Han, Y., Ye, X., Cheng, J., Zhang, S., Feng, W., Han, Z., Zhang, J., and Huang, K. (2019) Integrative analysis based on survival associated co-expression gene modules for predicting neuroblastoma patients’ survival time, Biol. Direct, 14, 4, doi: 10.1186/S13062-018-0229-2.

50. Francescatto, M., Chierici, M., Rezvan Dezfooli, S., Zandonà, A., Jurman, G., and Furlanello, C. (2018) Multi-omics integration for neuroblastoma clinical endpoint prediction, Biol. Direct, 13, 5, doi: 10.1186/s13062-018-0207-8.

51. Hidalgo, M. R., Amadoz, A., Çubuk, C., Carbonell-Caballero, J., and Dopazo, J. (2018) Models of cell signaling uncover molecular mechanisms of high-risk neuroblastoma and predict disease outcome, Biol. Direct, 13, 16, doi: 10.1186/s13062-018-0219-4.

52. Baali, I., Acar, D. A. E., Aderinwale, T. W., HafezQorani, S., and Kazan, H. (2018) Predicting clinical outcomes in neuroblastoma with genomic data integration, Biol. Direct, 13, 20, doi: 10.1186/s13062-018-0223-8.

53. Tranchevent, L.-C., Nazarov, P. V., Kaoma, T., Schmartz, G. P., Muller, A., Kim, S.-Y., Rajapakse, J. C., and Azuaje, F. (2018) Predicting clinical outcome of neuroblastoma patients using an integrative network-based approach, Biol. Direct, 13, 12, doi: 10.1186/s13062-018-0214-9.

54. Grimes, T., Walker, A. R., Datta, S., and Datta, S. (2018) Predicting survival times for neuroblastoma patients using RNA-seq expression profiles, Biol. Direct, 13, 11, doi: 10.1186/s13062-018-0213-x.

55. Cassandri, M., Smirnov, A., Novelli, F., Pitolli, C., Agostini, M., Malewicz, M., Melino, G., and Raschellà, G. (2017) Zinc-finger proteins in health and disease, Cell Death Discov., 3, 17071, doi: 10.1038/cddiscovery.2017.71.

56. Niklison-Chirou, M. V., Killick, R., Knight, R. A., Nicotera, P., Melino, G., and Agostini, M. (2016) How does p73 cause neuronal defects? Mol. Neurobiol., 53, 4509-4520, doi: 10.1007/s12035-015-9381-1.

57. Killick, R., Niklison-Chirou, M., Tomasini, R., Bano, D., Rufini, A., et al. (2011) p73: a multifunctional protein in neurobiology, Mol. Neurobiol., 43, 139-146, doi: 10.1007/s12035-011-8172-6.

58. Sayan, B. S., Yang, A. L., Conforti, F., Tucci, P., Piro, M. C., Browne, G. J., Agostini, M., Bernardini, S., Knight, R. A., Mak, T. W., and Melino, G. (2010) Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2, Proc. Natl. Acad. Sci. USA, 107, 12877-12882, doi: 10.1073/pnas.0911828107.

59. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., and Melino, G. (2014) Serine and glycine metabolism in cancer, Trends Biochem. Sci., 39, 191-198, doi: 10.1016/j.tibs.2014.02.004.

60. Niklison-Chirou, M. V., Steinert, J. R., Agostini, M., Knight, R. A., Dinsdale, D., Cattaneo, A., Mak, T. W., and Melino, G. (2013) TAp73 knockout mice show morphological and functional nervous system defects associated with loss of p75 neurotrophin receptor, Proc. Natl. Acad. Sci. USA, 110, 18952-18957, doi: 10.1073/pnas.1221172110.

61. Agostini, M., Tucci, P., Steinert, J. R., Shalom-Feuerstein, R., Rouleau, M., et al. (2011) MicroRNA-34a regulates neurite outgrowth, spinal morphology, and function, Proc. Natl. Acad. Sci. USA, 108, 21099-21104, doi: 10.1073/pnas.1112063108.

62. Agostini, M., Tucci, P., Killick, R., Candi, E., Sayan, B. S., et al. (2011) Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets, Proc. Natl. Acad. Sci. USA, 108, 21093-21098, doi: 10.1073/pnas.1112061109.

63. Fuertes-Alvarez, S., Maeso-Alonso, L., Villoch-Fernandez, J., Wildung, M., Martin-Lopez, M., et al. (2018) p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton, Cell Death Dis., 9, 1183, doi: 10.1038/s41419-018-1205-6.

64. Hochgerner, H., Zeisel, A., Lönnerberg, P., and Linnarsson, S. (2018) Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing, Nat. Neurosci., 21, 290-299, doi: 10.1038/s41593-017-0056-2.

65. Gulyaeva, N. V. (2019) Biochemical mechanisms and translational relevance of Hippocampal vulnerability to distant focal brain injury: the price of stress response, Biochemistry (Moscow), 84, 1306-1328, doi: 10.1134/S0006297919110087.

66. Rogaev, E. I. (2018) Different pathways to neurodegeneration, Biochemistry (Moscow), 83, 1007-1008, doi: 10.1134/S0006297918090018.

67. Nemajerova, A., Kramer, D., Siller, S. S., Herr, C., Shomroni, O., et al. (2016) TAp73 is a central transcriptional regulator of airway multiciliogenesis, Genes Dev., 30, 1300-1312, doi: 10.1101/gad.279836.116.

68. Buckley, N., Panatta, E., Morone, N., Noguchi, M., Scorrano, L., Knight, R. A., Amelio, I., and Melino, G. (2020) p73 C-terminus is dispensable for multiciliogenesis, Cell Cycle, 19, 1833-1845, doi: 10.1080/15384101.2020.1783055.

69. Kalinina, E. V., Ivanova-Radkevich, V. I., and Chernov, N. N. (2019) Role of microRNAs in the regulation of redox-dependent processes, Biochemistry (Moscow), 84, 1233-1246, doi: 10.1134/S0006297919110026.

70. Korshunov, D. A., Kondakova, I. V., and Shashova, E. E. (2019) Modern perspective on metabolic reprogramming in malignant neoplasms, Biochemistry (Moscow), 84, 1129-1142, doi: 10.1134/S000629791910002X.

71. Kobliakov, V. A. (2019) The mechanisms of regulation of aerobic clycolysis (Warburg effect) by oncoproteins in carcinogenesis, Biochemistry (Moscow), 84, 1117-1128, doi: 10.1134/S0006297919100018.

72. Rufini, A., Niklison-Chirou, M. V., Inoue, S., Tomasini, R., Harris, I. S., et al. (2012) TAp73 depletion accelerates aging through metabolic dysregulation, Genes Dev., 26, 2009-2014, doi: 10.1101/gad.197640.112.

73. Garrido-Maraver, J., Celardo, I., Costa, A. C., Lehamann, S., Loh, S. H. Y., and Martins, L. M. (2019) Enhancing folic acid metabolism suppresses defects associated with loss of Drosophila mitofusin, Cell Death Dis., 10, doi: 10.1038/S41419-019-1496-2.

74. Cheng, A., Wan, R., Yang, J.-L., Kamimura, N., Son, T. G., Ouyang, X., Luo, Y., Okun, E., and Mattson, M. P. (2012) Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines, Nat. Commun., 3, 1250, doi: 10.1038/ncomms2238.

75. Michels, S., Ganjam, G. K., Martins, H., Schratt, G. M., Wöhr, M., Schwarting, R. K. W., and Culmsee, C. (2018) Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells, Cell Death Discov., 4, 54, doi: 10.1038/s41420-018-0061-6.

76. Galkin, A. (2019) Brain ischemia/reperfusion injury and mitochondrial complex I damage, Biochemistry (Moscow), 84, 1411-1423, doi: 10.1134/S0006297919110154.

77. Wanet, A., Arnould, T., Najimi, M., and Renard, P. (2015) Connecting mitochondria, metabolism, and stem cell fate, Stem Cells Dev., 24, 1957-1971, doi: 10.1089/scd.2015.0117.

78. Khacho, M., and Slack, R. S. (2017) Mitochondrial activity in the regulation of stem cell self-renewal and differentiation, Curr. Opin. Cell Biol., 49, 1-8, doi: 10.1016/j.ceb.2017.11.003.

79. Agostini, M., Romeo, F., Inoue, S., Niklison-Chirou, M. V., Elia, A. J., Dinsdale, D., Morone, N., Knight, R. A., Mak, T. W., and Melino, G. (2016) Metabolic reprogramming during neuronal differentiation, Cell Death Differ., 23, 1502-1514, doi: 10.1038/cdd.2016.36.

80. Amelio, I., Markert, E. K., Rufini, A., Antonov, A. V., Sayan, B. S., Tucci, P., Agostini, M., Mineo, T. C., Levine, A. J., and Melino, G. (2014) p73 regulates serine biosynthesis in cancer, Oncogene, 33, 5039-5046, doi: 10.1038/onc.2013.456.

81. Niklison-Chirou, M. V., Erngren, I., Engskog, M., Haglöf, J., Picard, D., Remke, M., et al. (2017) TAp73 is a marker of glutamine addiction in medulloblastoma, Genes Dev., 31, 1738-1753, doi: 10.1101/gad.302349.117.

82. Marini, A., Rotblat, B., Sbarrato, T., Niklison-Chirou, M. V., Knight, J. R. P., et al. (2018) TAp73 contributes to the oxidative stress response by regulating protein synthesis, Proc. Natl. Acad. Sci. USA, 115, 6219-6224, doi: 10.1073/pnas.1718531115.

83. Zavyalova, M. V., Denisov, E. V., Tashireva, L. A., Savelieva, O. E., Kaigorodova, E. V., Krakhmal, N. V., and Perelmuter, V. M. (2019) Intravasation as a key step in cancer metastasis, Biochemistry (Moscow), 84, 762-772, doi: 10.1134/S0006297919070071.

84. Zamyatnin, A. A. (2019) Thematic issue: immuno-oncology and immunotherapy, Biochemistry (Moscow), 84, 693-694, doi: 10.1134/S0006297919070010.

85. Sverdlov, E. D., and Chernov, I. P. (2019) Cancer stem complex, not a cancer stem cell, is the driver of cancer evolution, Biochemistry (Moscow), 84, 1028-1039, doi: 10.1134/S0006297919090050.

86. Rossi, M., de Laurenzi, V., Munarriz, E., Green, D. R., Liu, Y.-C., Vousden, K. H., Cesareni, G., and Melino, G. (2005) The ubiquitin-protein ligase itch regulates p73 stability, EMBO J., 24, 836-848, doi: 10.1038/sj.emboj.7600444.

87. Rossi, M., Rotblat, B., Ansell, K., Amelio, I., Caraglia, M., Misso, G., Bernassola, F., Cavasotto, C. N., Knight, R. A., Ciechanover, A., and Melino, G. (2014) High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy, Cell Death Dis., 5, e1203-e1203, doi: 10.1038/cddis.2014.113.

88. Rossi, M., Munarriz, E. R., Bartesaghi, S., Milanese, M., Dinsdale, D., et al. (2009) Desmethylclomipramine induces the accumulation of autophagy markers by blocking autophagic flux, J. Cell Sci., 122, 3330-3339, doi: 10.1242/jcs.048181.