БИОХИМИЯ, 2020, том 85, вып. 10, с. 1398–1410

УДК 577.24

Вирусные инфекции: негативный регулятор апоптоза и фактор онкогенности

Обзор

© 2020 А.В. Замараев 1, Б. Животовский 1,2, Г.С. Копеина 1*

Московский государственный университет имени М.В. Ломоносова, факультет фундаментальной медицины, 119191 Москва, Россия; электронная почта: lirroster@gmail.com

Каролинский институт, Департамент медицины окружающей среды, SE-17177 Стокгольм, Швеция

Поступила в редакцию 30.06.2020
После доработки 09.09.2020
Принята к публикации 09.09.2020

DOI: 10.31857/S0320972520100073

КЛЮЧЕВЫЕ СЛОВА: онкогенные вирусы, апоптоз, онкологические заболевания.

Аннотация

Нарушение процесса программируемой апоптотической гибели клеток тесно связано с этиологией различных заболеваний, включая рак. Постоянные вирусные инфекции способны вызывать некоторые виды новообразований. Для этого онкогенные вирусы манипулируют как внешним путем запуска апоптоза, так и внутренним, подавляя активность проапоптотических белков и сигнальных путей. Неадекватный иммунный надзор или подавление иммунного ответа способны индуцировать бесконтрольное размножение вируса и пролиферацию клеток хозяина. В данном обзоре представлены современные данные о механизмах подавления апоптотической гибели вирусами и их роль в онкогенезе.

Сноски

* Адресат для корреспонденции.

Финансирование

Работа выполнена при поддержке гранта РНФ (проект 19-15-00125). Работа в лабораториях авторов также поддержана грантами РФФИ (18-29-09005, 20-015-00157), Шведским (190345) и Стокгольмским онкологическими фондами.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Настоящая работа не содержит описания выполненных авторами исследований с участием людей или использованием животных в качестве объектов.

Список литературы

1. Jin, Z., and El-Deiry, W. S. (2005) Overview of cell death signaling pathways, Cancer Biol. Ther., 4, 139-163, doi: 10.4161/cbt.4.2.1508.

2. Schleich, K., Warnken, U., Fricker, N., Öztürk, S., Richter, P., et al. (2012) Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model, Mol. Cell, 47, 306-319, doi: 10.1016/j.molcel.2012.05.006.

3. Ashkenazi, A., and Dixit, V. M. (1998) Death receptors: signaling and modulation, Science, 281, 1305-1308, doi: 10.1126/science.281.5381.1305.

4. Zamaraev, A. V., Kopeina, G. S., Zhivotovsky, B., and Lavrik, I. N. (2014) Cell death controlling complexes and their potential therapeutic role, Cell. Mol. Life Sci., 72, 505-517, doi: 10.1007/s00018-014-1757-2.

5. Raab-Traub, N. (2012) Novel mechanisms of EBV-induced oncogenesis, Curr. Opin. Virol., 2, 453-458, doi: 10.1016/j.coviro.2012.07.001.

6. Young, L. S., and Rickinson, A. B. (2004) Epstein-Barr virus: 40 years on, Nat. Rev. Cancer, 4, 757-768, doi: 10.1038/nrc1452.

7. Levrero, M., and Zucman-Rossi, J. (2016) Mechanisms of HBV-induced hepatocellular carcinoma, J. Hepatol., 64, 84-101, doi: 10.1016/j.jhep.2016.02.021.

8. Gessain, A., and Cassar, O. (2012) Epidemiological aspects and world distribution of HTLV-1 infection, Front. Microbiol., 3, doi: 10.3389/fmicb.2012.00388.

9. Matsuoka, M., and Jeang, K. T. (2007) Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation, Nat. Rev. Cancer, 7, 270-280, doi: 10.1038/nrc2111.

10. Schiffman, M., Clifford, G., and Buonaguro, F. M. (2009) Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline, Infect. Agent. Cancer, 4, doi: 10.1186/1750-9378-4-8.

11. Harper, D. M., and DeMars, L. R. (2017) HPV vaccines – a review of the first decade, Gynecol. Oncol., 146, 196-204, doi: 10.1016/j.ygyno.2017.04.004.

12. Mitchell, J. K., Lemon, S. M., and McGivern, D. R. (2015) How do persistent infections with hepatitis C virus cause liver cancer? Curr. Opin. Virol., 14, 101-108, doi: 10.1016/j.coviro.2015.09.003.

13. Goossens, N., and Hoshida, Y. (2015) Hepatitis C virus-induced hepatocellular carcinoma, Clin. Mol. Hepatol., 21, 105-114, doi: 10.3350/cmh.2015.21.2.105.

14. Schulz, T. F., and Cesarman, E. (2015) Kaposi Sarcoma-associated Herpesvirus: mechanisms of oncogenesis, Curr. Opin. Virol., 14, 116-128, doi: 10.1016/j.coviro.2015.08.016.

15. Wendzicki, J. A., Moore, P. S., and Chang, Y. (2015) Large T and small T antigens of Merkel cell polyomavirus, Curr. Opin. Virol., 11, 38-43, doi: 10.1016/j.coviro.2015.01.009.

16. Liu, W., MacDonald, M., and You, J. (2016) Merkel cell polyomavirus infection and Merkel cell carcinoma, Curr. Opin. Virol., 20, 20-27, doi: 10.1016/j.coviro.2016.07.011.

17. Krump, N. A., and You, J. (2018) Molecular mechanisms of viral oncogenesis in humans, Nat. Rev. Microbiol., 16, 684-698, doi: 10.1038/s41579-018-0064-6.

18. Vousden, K. H., and Lane, D. P. (2007) p53 in health and disease, Nat. Rev. Mol. Cell Biol., 8, 275-283, doi: 10.1038/nrm2147.

19. Kaminskyy, V., and Zhivotovsky, B. (2010) To kill or be killed: how viruses interact with the cell death machinery: symposium, J. Int. Med., 267, 473-482, doi: 10.1111/j.1365-2796.2010.02222.x.

20. Wang, X. W., Gibson, M. K., Yeh, H., Forrester, K., Harris, C. C., et al. (1995) Abrogation of p53-induced apoptosis by the Hepatitis B virus X gene, Cancer Res., 55, 6012-6016, doi: 10.1385/1-59259-079-9:57.

21. Knoll, S., Fürst, K., Thomas, S., Baselga, S. V., Stoll, A., Schaefer, S., and Pützer, B. M. (2011) Dissection of cell context-dependent interactions between HBx and p53 family members in regulation of apoptosis: A role for HBV-induced HCC, Cell Cycle, 10, 3554-3565, doi: 10.4161/cc.10.20.17856.

22. Chao, C. C. K. (2016) Inhibition of apoptosis by oncogenic hepatitis B virus X protein: Implications for the treatment of hepatocellular carcinoma, World J. Hepatol., 8, 1061-1066, doi: 10.4254/wjh.v8.i25.1061.

23. Voican, C. S., Mir, O., Loulergue, P., Dhooge, M., Brezault, C., et al. (2016) Hepatitis B virus reactivation in patients with solid tumors receiving systemic anticancer treatment, Ann. Oncol., 27, 2172-2184, doi: 10.1093/annonc/mdw414.

24. Vescovo, T., Refolo, G., Vitagliano, G., Fimia, G. M., and Piacentini, M. (2016) Molecular mechanisms of hepatitis C virus-induced hepatocellular carcinoma, Clin. Microbiol. Infect., 22, 853-861, doi: 10.1016/j.cmi.2016.07.019.

25. Levine, A. J., and Oren, M. (2009) The first 30 years of p53: Growing ever more complex, Nat. Rev. Cancer, 9, 749-758, doi: 10.1038/nrc2723.

26. Liu, X., and Marmorstein, R. (2006) When viral oncoprotein meets tumor suppressor: a structural view, Genes Dev., 20, 2332-2337, doi: 10.1101/gad.1471706.

27. Hermannstadter, A., Ziegler, C., Kuhl, M., Deppert, W., and Tolstonog, G. V. (2009) Wild-type p53 enhances efficiency of Simian virus 40 large-T-antigen-induced cellular transformation, J. Virol., 83, 10106-10118, doi: 10.1128/jvi.00174-09.

28. Engeland, K. (2018) Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM, Cell Death Differ., 25, 114-132, doi: 10.1038/cdd.2017.172.

29. Moss, B. (1990) Regulation of vaccinia virus transcription, Annu. Rev. Biochem., 59, 661-688, doi: 10.1146/annurev.bi.59.070190.003305.

30. Santos, C. R., Vega, F. M., Blanco, S., Barcia, R., and Lazo, P. A. (2004) The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism, Virology, 328, 254-265, doi: 10.1016/j.virol.2004.08.013.

31. Greenway, A. L., McPhee, D. A., Allen, K., Johnstone, R., et al. (2002) Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis, J. Virol., 76, 2692-2702, doi: 10.1128/jvi.76.6.2692-2702.2002.

32. Thakur, B. K., Chandra, A., Dittrich, T., Welte, K., and Chandra, P. (2012) Inhibition of SIRT1 by HIV-1 viral protein Tat results in activation of p53 pathway, Biochem. Biophys. Res. Commun., 424, 245-250, doi: 10.1016/j.bbrc.2012.06.084.

33. Gnanasundram, S., Malbert-Colas, L., Chen, S., Fusée, L., Daskalogianni, C., et al. (2020) MDM2’s dual mRNA binding domains co-ordinate its oncogenic and tumour suppressor activities, Nucleic Acids Res., 48, 6775-6787, doi: 10.1093/nar/gkaa431.

34. Benedict, C. A., Norris, P. S., and Ware, C. F. (2002) To kill or be killed: viral evasion of apoptosis, Nat. Immunol., 3, 1013-1018, doi: 10.1038/ni1102-1013.

35. Reading, P. C., Khanna, A., and Smith, G. L. (2002) Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence, Virology, 292, 285-298, doi: 10.1006/viro.2001.1236.

36. Du, J., Liang, X., Liu, Y., Qu, Z., Gao, L., et al. (2009) Hepatitis B virus core protein inhibits TRAIL-induced apoptosis of hepatocytes by blocking DR5 expression, Cell Death Differ., 16, 219-229, doi: 10.1038/cdd.2008.144.

37. Morrison, T. E., Mauser, A., Klingelhutz, A., and Kenney, S. C. (2004) Epstein–Barr virus immediate-early protein BZLF1 inhibits tumor necrosis factor alpha-induced signaling and apoptosis by downregulating tumor necrosis factor receptor 1, J. Virol., 78, 544-549, doi: 10.1128/jvi.78.1.544-549.2004.

38. Benedict, C. A., Norris, P. S., Prigozy, T. I., Bodmer, J. L., Mahr, J. A., et al. (2001) Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2, J. Biol. Chem., 276, 3270-3278, doi: 10.1074/jbc.m008218200.

39. Kabsch, K., and Alonso, A. (2002) The Human Papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms, J. Virol., 76, 12162-12172, doi: 10.1128/jvi.76.23.12162-12172.2002.

40. Thome, M., Schneider, P., Hofmann, K., Fickenscher, H., Meinl, E., et al. (1997) Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors, Nature, 386, 517-521, doi: 10.1038/386517a0.

41. Kim, H., and Ray, R. (2014) Evasion of TNF-α-mediated apoptosis by hepatitis C virus, Methods Mol. Biol., 1155, 125-132, doi: 10.1007/978-1-4939-0669-7_11.

42. Nailwal, H., and Chan, F. K. M. (2019) Necroptosis in anti-viral inflammation, Cell Death Differ., 26, 4-13, doi: 10.1038/s41418-018-0172-x.

43. Filippova, M., Filippov, V. A., Kagoda, M., Garnett, T., Fodor, N., and Duerksen-Hughes, P. J. (2009) Complexes of Human Papillomavirus type 16 E6 proteins form pseudo-death-inducing signaling complex structures during tumor necrosis factor-mediated apoptosis, J. Virol., 83, 210-227, doi: 10.1128/jvi.01365-08.

44. Garnett, T. O., Filippova, M., and Duerksen-Hughes, P. J. (2006) Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis, Cell Death Differ., 13, 1915-1926, doi: 10.1038/sj.cdd.4401886.

45. Yuan, H., Fu, F., Zhuo, J., Wang, W., Nishitani, J., An, D. S., Chen, I. S. Y., and Liu, X. (2005) Human papillomavirus type 16 E6 and E7 oncoproteins upregulate c-IAP2 gene expression and confer resistance to apoptosis, Oncogene, 24, 5069-5078, doi: 10.1038/sj.onc.1208691.

46. Dufour, F., Sasseville, A. M. J., Chabaud, S., Massie, B., Siegel, R. M., and Langelier, Y. (2011) The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFα- and FasL-induced apoptosis by interacting with caspase-8, Apoptosis, 16, 256-271, doi: 10.1007/s10495-010-0560-2.

47. McCormick, A. L., Skaletskaya, A., Barry, P. A., Mocarski, E. S., and Goldmacher, V. S. (2003) Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses, Virology, 316, 221-233, doi: 10.1016/j.virol.2003.07.003.

48. Veyer, D. L., Carrara, G., Maluquer de Motes, C., and Smith, G. L. (2017) Vaccinia virus evasion of regulated cell death, Immunol. Lett., 186, 68-80, doi: 10.1016/j.imlet.2017.03.015.

49. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J., and Green, D. R. (2010) The BCL-2 family reunion, Mol. Cell, 37, 299-310, doi: 10.1016/j.molcel.2010.01.025.

50. Danial, N. N., and Korsmeyer, S. J. (2004) Cell death: critical control points, Cell, 116, 205-219, doi: 10.1016/s0092-8674(04)00046-7.

51. Altmann, M., and Hammerschmidt, W. (2005) Epstein–Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis, PLoS Biol., 3, 1-10, doi: 10.1371/journal.pbio.0030404.

52. Han, J., Wallen, H. D., Nuñez, G., and White, E. (1998) E1B 19,000-molecular-weight protein interacts with and inhibits CED-4-dependent, FLICE-mediated apoptosis, Mol. Cell. Biol., 18, 6052-6062, doi: 10.1128/mcb.18.10.6052.

53. Farrow, S. N., White, J. H. M., Martinou, I., Raven, T., Pun, K. T., Grinham, C. J., Martinou, J. C., and Brown, R. (1995) Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K, Nature, 374, 731-733, doi: 10.1038/374731a0.

54. Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J., and Chang, Y. (1997) Kaposi’s sarcoma-associated herpesvirus encodes a functional Bcl-2 homologue, Nat. Med., 3, 293-298, doi: 10.1038/nm0397-293.

55. Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G., and Rickinson, A. (1993) Epstein–Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death, Proc. Natl. Acad. Sci. USA, 90, 8479-8483, doi: 10.1073/pnas.90.18.8479.

56. Kvansakul, M., Yang, H., Fairlie, W. D., Czabotar, P. E., Fischer, S. F., et al. (2008) Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands, Cell Death Differ., 15, 1564-1571, doi: 10.1038/cdd.2008.83.

57. Flanagan, A. M., and Letai, A. (2008) BH3 domains define selective inhibitory interactions with BHRF-1 and KSHV BCL-2, Cell Death Differ., 15, 580-588, doi: 10.1038/sj.cdd.4402292.

58. Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S. Y., and Youle, R. J. (2006) Role of Bax and Bak in mitochondrial morphogenesis, Nature, 443, 658-662, doi: 10.1038/nature05111.

59. Norris, K. L., and Youle, R. J. (2008) Cytomegalovirus proteins vMIA and m38.5 link mitochondrial morphogenesis to Bcl-2 family proteins, J. Virol., 82, 6232-6243, doi: 10.1128/jvi.02710-07.

60. Wang, H. W., Sharp, T. V., Koumi, A., Koentges, G., and Boshoff, C. (2002) Characterization of an anti-apoptotic glycoprotein encoded by Kaposi’s sarcoma-associated herpesvirus which resembles a spliced variant of human survivin, EMBO J., 21, 2602-2615, doi: 10.1093/emboj/21.11.2602.

61. Taylor, J. M., Quilty, D., Banadyga, L., and Barry, M. (2006) The vaccinia virus protein F1L interacts with Bim and inhibits activation of the pro-apoptotic protein Bax, J. Biol. Chem., 281, 39728-39739, doi: 10.1074/jbc.M607465200.

62. Postigo, A., Cross, J. R., Downward, J., and Way, M. (2006) Interaction of F1L with the BH3 domain of Bak is responsible for inhibiting vaccinia-induced apoptosis, Cell Death Differ., 13, 1651-1662, doi: 10.1038/sj.cdd.4401853.

63. Carrara, G., Parsons, M., Saraiva, N., and Smith, G. L. (2017) Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer, Open Biol., 7, 170045, doi: 10.1098/rsob.170045.

64. Cross, J. R., Postigo, A., Blight, K., and Downward, J. (2008) Viral pro-survival proteins block separate stages in Bax activation but changes in mitochondrial ultrastructure still occur, Cell Death Differ., 15, 997-1008, doi: 10.1038/cdd.2008.14.

65. Masalova, O., Lesnova, E., Solyev, P., Zakirova, N., Prassolov, V., et al. (2017) Modulation of cell death pathways by Hepatitis C virus proteins in Huh7.5 hepatoma cells, Int. J. Mol. Sci., 18, 2346, doi: 10.3390/ijms18112346.

66. Liu, H., Yuan, Y., Guo, H., Mitchelson, K., Zhang, K., et al. (2012) Hepatitis B virus encoded X protein suppresses apoptosis by inhibition of the caspase-independent pathway, J. Proteome Res., 11, 4803-4813, doi: 10.1021/pr2012297.

67. Kim, S. J., Khan, M., Quan, J., Till, A., Subramani, S., and Siddiqui, A. (2013) Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis, PLoS Pathog., 9, 1-12, doi: 10.1371/journal.ppat.1003722.

68. Brazil, D. P., Yang, Z. Z., and Hemmings, B. A. (2004) Advances in protein kinase B signalling: AKTion on multiple fronts, Trends Biochem. Sci., 29, 233-242, doi: 10.1016/j.tibs.2004.03.006.

69. Datta, S. R., Brunet, A., and Greenberg, M. E. (1999) Cellular survival: a play in three akts, Genes Dev., 13, 2905-2927, doi: 10.1101/gad.13.22.2905.

70. Takino, J. I., Sato, T., Nagamine, K., and Hori, T. (2019) The inhibition of Bax activation-induced apoptosis by RasGRP2 via R-Ras-PI3K-Akt signaling pathway in the endothelial cells, Sci. Rep., 9, 16717, doi: 10.1038/s41598-019-53419-4.

71. Fresno Vara, J. Á., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C., and González-Barón, M. (2004) P13K/Akt signalling pathway and cancer, Cancer Treat. Rev., 30, 193-204, doi: 10.1016/j.ctrv.2003.07.007.

72. Zhao, H. F., Wang, J., Shao, W., Wu, C. P., Chen, Z. P., To, S. T., and Li, W. P. (2017) Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development, Mol. Cancer, 16, 100, doi: 10.1186/s12943-017-0670-3.

73. Surviladze, Z., Sterk, R. T., DeHaro, S. A., and Ozbun, M. A. (2013) Cellular entry of Human Papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy, J. Virol., 87, 2508-2517, doi: 10.1128/jvi.02319-12.

74. Zhang, L., Wu, J., Ling, M. T., Zhao, L., and Zhao, K. N. (2015) The role of the PI3K/Akt/mTOR signalling pathway in human cancers induced by infection with human papillomaviruses, Mol. Cancer, 14, doi: 10.1186/s12943-015-0361-x.

75. Fukuda, M., and Longnecker, R. (2004) Latent membrane protein 2A inhibits transforming growth factor-1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway, J. Virol., 78, 1697-1705, doi: 10.1128/jvi.78.4.1697-1705.2004.

76. Scholle, F., Bendt, K. M., and Raab-Traub, N. (2000) Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt, J. Virol., 74, 10681-10689, doi: 10.1128/jvi.74.22.10681-10689.2000.

77. Sodhi, A., Montaner, S., Patel, V., Gómez-Román, J. J., Li, Y., Sausville, E. A., Sawait, E. T., and Gutkind, J. S. (2004) Akt plays a central role in sarcomagenesis induced by Kaposi’s sarcoma herpesvirus-encoded G protein-coupled receptor, Proc. Natl. Acad. Sci. USA, 101, 4821-4826, doi: 10.1073/pnas.0400835101.

78. Tomlinson, C. C., and Damania, B. (2004) The K1 protein of Kaposi’s sarcoma-associated Herpesvirus activates the Akt signaling pathway, J. Virol., 78, 1918-1927, doi: 10.1128/jvi.78.4.1918-1927.2004.

79. Olagnier, D., Sze, A., Bel Hadj, S., Chiang, C., Steel, C., Han, X., Routy, J. P., Lin, R., Hiscott, J., and van Grevenynghe, J. (2014) HTLV-1 Tax-mediated inhibition of FOXO3a activity is critical for the persistence of terminally differentiated CD4+ T cells, PLoS Pathog., 10, e1004575, doi: 10.1371/journal.ppat.1004575.

80. Bai, D., Ueno, L., and Vogt, P. K. (2009) Akt-mediated regulation of NF-κB and the essentialness of NF-κB for the oncogenicity of PI3K and Akt, Int. J. Cancer, 125, 2863-2870, doi: 10.1002/ijc.24748.

81. Feng, C., Wu, B., Fan, H., Li, C., and Meng, S. (2014) NF-kappaB-induced gp96 up-regulation promotes hepatocyte growth, cell cycle progression and transition, Acta Microbiol. Sinica, 54, 1212-1220.

82. Huber, M. A., Azoitei, N., Baumann, B., Grünert, S., Sommer, A., et al. (2004) NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression, J. Clin. Invest., 114, 569-581, doi: 10.1172/jci21358.

83. Kulwichit, W., Edwards, R. H., Davenport, E. M., Baskar, J. F., Godfrey, V., and Raab-Traub, N. (1998) Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice, Proc. Natl. Acad. Sci. USA, 95, 11963-11968, doi: 10.1073/pnas.95.20.11963.

84. Wang, L. W., Jiang, S., and Gewurz, B. E. (2017) Epstein–Barr virus LMP1-mediated oncogenicity, J. Virol., 91, e01718-16, doi: 10.1128/jvi.01718-16.

85. Gopalakrishnan, R., Matta, H., and Chaudhary, P. M. (2013) A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP k13-induced NF-κB, Clin. Cancer Res., 19, 5016-5026, doi: 10.1158/1078-0432.ccr-12-3510.

86. Briggs, L. C., Chan, A. W. E., Davis, C. A., Whitelock, N., Hotiana, H. A., et al. (2017) IKKγ-mimetic peptides block the resistance to apoptosis associated with Kaposi’s sarcoma-associated Herpesvirus infection, J. Virol., 91, e01170-17, doi: 10.1128/jvi.01170-17.

87. Chugh, P., Matta, H., Schamus, S., Zachariah, S., Kumar, A., Richardson, J. A., Smith, A. L., and Chaudhary, P. M. (2005) Constitutive NF-κB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice, Proc. Natl. Acad. Sci. USA, 102, 12885-12890, doi: 10.1073/pnas.0408577102.

88. Lavorgna, A., and Harhaj, E. W. (2014) Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway, Viruses, 6, 3925-3943, doi: 10.3390/v6103925.

89. Kgatle, M. M., Spearman, C. W., Kalla, A. A., and Hairwadzi, H. N. (2017) DNA oncogenic virus-induced oxidative stress, genomic damage, and aberrant epigenetic alterations, Oxid. Med. Cell. Longev., 2017, 1-16, doi: 10.1155/2017/3179421.

90. Williams, V., Brichler, S., Khan, E., Chami, M., Dény, P., Kremsdorf, D., and Gordien, E. (2012) Large hepatitis delta antigen activates STAT-3 and NF-κB via oxidative stress, J. Viral Hepat., 19, 744-753, doi: 10.1111/j.1365-2893.2012.01597.x.

91. Xia, Y., Shen, S., and Verma, I. M. (2014) NF-κB, an active player in human cancers, Cancer Immunol. Res., 2, 823-830, doi: 10.1158/2326-6066.cir-14-0112.

92. Zur Hausen, H., and de Villiers, E. M. (2014) Cancer “causation” by infections – Individual contributions and synergistic networks, Semin. Oncol., 41, 860-875, doi: 10.1053/j.seminoncol.2014.10.003.

93. Ren, Y., Shu, T., Wu, D., Mu, J., Wang, C., et al. (2020) The ORF3a protein of SARS-CoV-2 induces apoptosis in cells, Cell. Mol. Immunol., 17, 881-883, doi: 10.1038/s41423-020-0485-9.

94. Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., et al. (2020) Endothelial cell infection and endotheliitis in COVID-19, Lancet, 395, 1417-1418, doi: 10.1016/S0140-6736(20)30937-5.

95. Alpalhão, M., Ferreira, J. A., and Filipe, P. (2020) Persistent SARS-CoV-2 infection and the risk for cancer, Med. Hypotheses, 143, 109882, doi: 10.1016/j.mehy.2020.109882.

96. Mesri, E. A., Feitelson, M. A., and Munger, K. (2014) Human viral oncogenesis: a cancer hallmarks analysis, Cell Host Microbe, 15, 266-282, doi: 10.1016/j.chom.2014.02.011.

97. Van Kriekinge, G., Castellsagué, X., Cibula, D., and Demarteau, N. (2014) Estimation of the potential overall impact of human papillomavirus vaccination on cervical cancer cases and deaths, Vaccine, 32, 733-739, doi: 10.1016/j.vaccine.2013.11.049.

98. McQuaid, T., Savini, C., and Seyedkazemi, S. (2015) Sofosbuvir, a significant paradigm change in HCV treatment, J. Clin. Transl. Hepatol., 3, 27-35, doi: 10.14218/jcth.2014.00041.

99. Schiller, J. T., and Lowy, D. R. (2010) Vaccines to prevent infections by oncoviruses, Annu. Rev. Microbiol., 64, 23-41, doi: 10.1146/annurev.micro.112408.134019.

100. Bu, W., Joyce, M. G., Nguyen, H., Banh, D. V., Aguilar, F., et al. (2019) Immunization with components of the viral fusion apparatus elicits antibodies that neutralize Epstein–Barr Virus in B cells and epithelial cells, Immunity, 50, 1305-1316, doi: 10.1016/j.immuni.2019.03.010.