
ПРИЛОЖЕНИЕ 
 
 Широкое распространение в геномном редактировании получила система 
CRISPR/Сas, позволяющая вводить двуцепочечные разрывы в любое место ДНК за счёт 
РНК-направленной активности эндонуклеазы Сas9 [1, 2]. Двуцепочечные разрывы в 
целевом гене преимущественно репарируются по пути негомологичного соединения 
концов (Non-homologous end joining, NHEJ), который часто сопровождается появлением 
инсерций и делеций, приводящих к сдвигу рамки считывания гена и образованию 
нефункционального белка [3]. Роль PrimPol в ответе на повреждения ДНК почти не 
исследовалась в опухолевых клетках. Мутации PRIMPOL (5'UTR-вариант и замена 
Y100H) обнаружены в других культурах клеток карциномы лёгкого человека [4, 5] и 
описаны в базе COSMIC. В настоящей работе с помощью CRISPR/Сas была получена 
клеточная линия аденокарциномы лёгкого человека А549 (немелкоклеточный рак 
лёгких), нокаутная по гену PRIMPOL. Особенностью линии является наличие мутации в 
KRAS (замена G12S) [6]. Линию отличает простота ведения культуры и высокая 
эффективность трансфекции. 
 Генетические конструкции для редактирования гена PRIMPOL. С помощью 
биоинформатической платформы Benchling.com были подобраны два варианта 
направляющей РНК с максимальными показателями эффективности и специфичности к 
гену PRIMPOL. Олигонуклеотиды, содержащие последовательности протоспейсеров, 
сконструировали следующим образом: последовательность 5'-CACC-3' для создания 
липких концов, гуаниновый нуклеотид, который повышает эффективность целевой 
активности комплекса Cas9–sgRNA, и затем последовательность протоспейсера; другой 
олигонуклеотид содержал последовательность 5'-AAAC-3' для создания липких концов, 
последовательность, комплементарную протоспейсеру, и цитозиновый нуклеотид. В 
состав гена PRIMPOL входят 13 экзонов, целевые участки редактирования находились в 
экзоне 5 (протоспейсер 1 – 5'-TTTAACAAACCTGCCAACCC-3') и экзоне 3 
(протоспейсер 2 – 5'-AACGAGCATCTCATTATGAG-3'). После отжига олигонуклеотидов 
с последовательностью протоспейсеров с комплементарными последовательностями 
(табл. П1) полученные дуплексы с липкими концами клонировали с использованием 
эндонуклеазы BbsI («СибЭнзим», Россия) в плазмиду pSpCas9(BB)-2A-GFP (pX458; 
плазмида любезно предоставлена Ф. Чжаном; Addgene #48138; 
http://n2t.net/addgene:48138; RRID: Addgene_48138), кодирующую нуклеазу Cas9 из 
Streptococcus pyogenes и репортерный ген усиленного зелёного флуоресцирующего белка 
(EGFP) [7]. 
 
Таблица П1. Последовательности олигонуклеотидов протоспейсеров для встраивания в 
плазмиду pX458 

Название  Экзон Последовательность (5' → 3') 
PRIMPOL_1_for 5 CACCGTTTAACAAACCTGCCAACCC 
PRIMPOL_1_rev AAACGGGTTGGCAGGTTTGTTAAAC 
PRIMPOL_2_for 3 CACCGAACGAGCATCTCATTATGAG 
PRIMPOL-2_rev AAACCTCATAATGAGATGCTCGTTC 
 
 
 Получение моноклональных линий клеток А549, нокаутных по гену 
PRIMPOL. Клетки трансфицировали плазмидой, кодирующей единую направляющую 
РНК (sgRNA) к гену PRIMPOL, с помощью липофектамина 3000 («Invitrogen», США) по 
протоколу производителя. Трансфицированные GFP+ клетки отбирали на клеточном 
сортере S3e Cell Sorter («BioRad», США). Для получения моноклональных линий 
отобранные клетки рассаживали по 96-луночным планшетам в разведениях 0,5, 1 и 
2 клетки на лунку и культивировали в течение 3 недель. Из полученных моноклонов 



выделяли геномную ДНК, амплифицировали целевые области гена PRIMPOL длиной 
около 500 п.о. и секвенировали по Сэнгеру. Эффективность внесения инсерций и 
делеций в результате двуцепочечных разрывов и запуска репарационного процесса 
системой CRISPR/Cas оценивали с помощью метода TIDE (Tracking of Indels by 
Decomposition) с использованием платформы DESKGEN (https://tide.nki.nl/).  
 Скрининговая трансфекция показала, что sgRNA1 и sgRNA2 оптимальны для 
редактирования. Согласно анализу методом TIDE, делеции и инсерции произошли в 
35,3% и 40% целевых локусов после трансфекции плазмидами, кодирующими sgRNA1 и 
sgRNA2 соответственно. 
 На следующем этапе получали моноклоны клеток A549 с использованием sgRNA1, 
направленной на экзон 5 гена PRIMPOL. Сайт расщепления sgRNA1/Cas9 расположен 
рядом с сайтом рестриктазы BssECI C^CNNGG (рис. П1, а). Внесение делеций и 
инсерций подтверждали с помощью анализа полиморфизма длин рестрикционных 
фрагментов (RFLP, Restriction Fragment Length Polymorphism). Полученные ПЦР-
продукты обрабатывали эндонуклеазой рестрикции BssECI («СибЭнзим») по протоколу 
производителя и анализировали в 2%-ном агарозном геле. 

 

 
Рис. П1. Анализ моноклональных линий. а – Расположение сайтов расщепления 
sgRNA1/Cas9 и BssECI в экзоне 5 гена PRIMPOL. б – Анализ моноклональных линий 
методом RFLP. ПЦР-продукт экзона 5 гена PRIMPOL размером 576 п.о. обрабатывали 
BssECI. В случае отсутствия редактирования и сохранения сайта рестрикции 
происходило расщепление ПЦР-продукта на фрагменты длиной 421 и 155 п.о., в случае 
же успешного редактирования гена системой sgRNA1/Cas9 сайт рестрикции исчезал. в –
 Анализ ПЦР-продуктов экзона 5 гена PRIMPOL моноклональной линии 21 методом 
TIDE. Столбец в центре диаграммы (положение «0») отражает количество ПЦР-
продуктов в образце, идентичных таковым в клетках дикого типа (нередактированные 
последовательности). Столбец розового цвета показывает наличие инсерции (p < 0,001), 



столбцы чёрного цвета показывают наличие последовательностей с инсерциями и 
делециями, которые с высокой вероятностью являются «шумом» секвенирования 
(p > 0,001). г – Анализ экспрессии PrimPol в моноклональной линии 21 с помощью 
иммуноблоттинга. Эндогенную PrimPol в тотальных экстрактах клеток детектировали с 
помощью поликлональных антител к полноразмерной PrimPol человека. Молекулярная 
масса PrimPol соответствует 66 кДа. Дорожка 1 – клетки дикого типа, дорожка 2 – 
моноклональная линия 21, дорожка 3 – маркер молекулярного веса. 
 
 
 Анализ семи моноклональных линий показал наличие двух потенциально 
гомозиготных нокаутных линий 20 и 21 (рис. П1, б, дорожки 9–12), у которых целевая 
область геномной ДНК была устойчива к действию BssECI. Секвенирование экзона 5 
гена PRIMPOL и анализ TIDE (рис. П1, в) моноклона 21 подтвердили наличие вставки 
размером 35 п.о., приводящей к сдвигу рамки считывания, и отсутствие аллеля дикого 
типа. 
 Иммуноблоттинг. Наличие эндогенного белка PrimPol в лизатах клеток A549 
дикого типа и моноклональной линии 21 анализировали с помощью иммуноблоттинга с 
поликлональными кроличьими антителами к полноразмерному рекомбинантному белку 
PrimPol. Клетки в количестве 5×107 промывали холодным буфером PBS, добавляли 
3 объёма холодного PBS и механически разрушали пестиком в 1,5-мл пробирке со 
стеклянной пудрой. Полученную суспензию центрифугировали при 14 тыс. об./мин в 
течение 10 мин при 0 °С и измеряли концентрацию белка методом Брэдфорда. 
Проводили электрофорез в 13%-ном денатурирующем полиакриламидном геле, нанося 
40 мг свежего лизата в одну лунку. Перенос белков на поливинилиденфторидную 
мембрану осуществляли в буфере для переноса (47,9 мМ Tris, 38,6 мМ глицин, 
0,0385%-ный додецилсульфат натрия, 20%-ный этанол) при 200 мA и 4 °С в течении 
1,5 ч. 
 Для детекции PrimPol использовали поликлональные антитела кролика, 
полученные компанией «Алмабион» (Россия). Четырёхкратную иммунизацию кролика 
проводили 2 мг (суммарно) полноразмерного белка PrimPol, антитела очищали с 
помощью Protein A-сефарозы. В качестве контроля загрузки использовали антитела к 
GAPDH («BioRad», каталожный номер 12004168). Мембрану блокировали 5%-ным 
раствором сухого молока в PBS и инкубировали в течение 2 ч при 22 °С с антителами к 
PrimPol в разведении 1 : 300 или антителами к GAPDH в разведении 1 : 5000, после чего 
промывали PBS и инкубировали со вторичными антителами против IgG кролика в 
разведении 1 : 1000 («Abcam», Великобритания, ab97020). Визуализацию сигнала PrimPol 
на мембране проводили набором AP Conjugate Substrate Kit («BioRad») по протоколу 
производителя. Визуализацию сигнала GAPDH проводили с помощью системы 
ChemiDoc Imaging System («BioRad»). 
 В линии клеток дикого типа был обнаружен сигнал на уровне 66 кДа, 
соответствующий расчётной молекулярной массе PrimPol (рис. П1, г, дорожка 1). Полоса 
полностью исчезала в моноклональной линии 21 (рис. П1, г, дорожка 2), что 
свидетельствует об успешном получении линии с нокаутом PRIMPOL. 
 Анализ неспецифического редактирования. В процессе геномного 
редактирования может происходить неспецифическое редактирование. 
Последовательности пяти наиболее вероятных неспецифических сайтов редактирования 
sgRNA1 были предсказаны Benchling.com (табл. П2). Вероятность редактирования для 
них составляла 0,3–1,5%. 
 
Таблица П2. Последовательности вероятных сайтов неспецифического редактирования 
sgRNA1 



Последовательность сайта 
редактирования 

Процент 
вероятности 

Ген Белок 

TTTAACAAACCTGCCAACC
C 

100% CCDC111 PrimPol 

CTTGACAAACCGGCTAACC
C 

1,5% MTMR9 Myotubularin Related 
Protein 9 

ATCCACACACCTGCCGACC
C 

1,4% MICU1 Mitochondrial 
Calcium Uptake 1 

TTCAACACAGCTGCCAGCC
C 

0,6% ZFP512B Zinc finger protein 
512B 

TTAAACTCACCTTCCAACC
C 

0,4% MYO1B Myosin IB 

CTTAACAGAACTGCCAAGC
C 

0,3% RIC3 RIC3 Acetylcholine 
Receptor Chaperone 

 
 
 Отсутствие инсерций и делеций в данных областях в моноклональной линии 21 
было подтверждено с помощью секвенирования. Для амплификации таргетных 
последовательностей ДНК использовали пары праймеров из табл. П3. 
 
Таблица П3. Праймеры для ПЦР с геномной ДНК, использованные для проверки сайтов 
неспецифического редактирования системой sgRNA/Cas9 

Ген Праймер 1 Праймер 2 
RIC3 

(ENSG0000016640
5) 

GCTTTAGGTAAGGACTGTCC GAGAACATTTTGTTTGTGGG
G 

MYO1B 
(ENSG0000012864

1) 

AATAATGCTGTGTCCTGAGT
C 

TATTATTTCAAGGACTTCCT
GC 

ZNF512B 
(ENSG0000019670

0) 

CAGTTCCCATATCAAATGAC
C 

CTTGCTTCTGTTTTCTACCTC 

MICU1 
(ENSG0000010774

5) 

CTAACACAGATCCTTCCTGG TCGCTTTACCCAAACAGTAA
C 

MTMR9 
(ENSG0000010464

3) 

GTGACTCTTGGATTTAAGTG
C 

TTTAACACTAGCCATCTGTG
C 

RP11-252M24,1 
(ENSG0000028045

5) 

TTATTGGACCTTTCCAAACC
C 

AGATAAGGAAAACCTAGGC
AG 

RP11-75C10,6 
(ENSG0000027980

1) 

GAGAAAGTTCACAGTTTGA
GG 

AGCAATATCCCTCCCTATCC 

 
 



 
Рис. П2. Оценка чувствительности клеток А549 к ионизирующему излучению с 
помощью иммунофлуоресцентного анализа радиационно-индуцированных фокусов, 
содержащих RAD51 (максимальное число фокусов RAD51 (через 6 ч) > 3 раза ниже 
максимального числа локусов γН2АХ (через 1 ч)) 
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